Óbuda University
Rejtő Sándor Faculty of Light Industry and Environmental Engineering

TRAINING PROGRAM

Environmental Engineering BSc (E)

Budapest, 01 September 2017
DEGREE PROGRAM CURRICULUM

1. Degree program name:

Environmental Engineering BSc

2. Field of training:

agricultural / economic sciences / informatics / technical / pedagogical/ natural sciences

3. Language of training:

English

4. Training schedule(s) and duration of courses in semesters, number of contact hours:

regular / evening / correspondence / distance training

5. Optional specialties:

Light industrial specialization regular
Environmental Public Administration specialization regular
Green Energy specialization regular

6. Number of credits to collect to earn degree: 210 credits

7. Level of qualification and professional qualification as indicated in the degree certificate:

- level of qualification: bachelor - BSc
- professional qualification: Environmental Engineer

8. Study area classification of professional qualification according to the standard classification system of training areas: 851

9. Educational objective:

The aim is to train environmental engineers with up-to-date knowledge and skills of applied natural sciences, ecology, technology, economics, and management. They can identify environmental hazards in various areas, and they can use their professional experience to manage prevention and remediation actions economically and efficiently. In possession of their professional knowledge and skills, they are capable to take part in the prevention, reduction and elimination of environmental pollution and damage; in endeavors towards the rational use of natural resources; and in the operation of low-waste and energy-efficient technologies. They are prepared to continue their studies at a Masters course.
10. Professional competencies to be mastered:

ENVIRONMENTAL ENGINEER

a) knowledge

- Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

- In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

- Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

- Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

- Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.

- Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

- Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

- Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.

- Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.

- Knowledge of requirements and methods for health and safety, fire protection, safety engineering and remediation as related to the field of environment protection.

b) capabilities

- Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.
- Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

- Able to perform environmental impact assessments and to participate in compiling impact studies.

- Able to apply environmental remediation methods, to prepare for and participate in remediation.

- Able to apply in practice as well the regulations and requirements of health and safety, fire protection, and safety engineering as related to their special field.

- Able to communicate both verbally and in writing in their mother tongue and in at least one foreign language, in respect of professional issues, and to continuously develop their professional skills as required.

- Able to perform public administrative and authority tasks related to environment protection after getting acquainted with the duty assigned to them.

- Adequate perseverance and endurance of monotony to perform practical operations.

- Able to carry out assignments as environmental officer.

- Able to participate in project and proposal implementation and audit tasks based on their knowledge.

- Able to carry out management duties subject to sufficient professional experience.

- Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

- Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

- Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

- Able to take part in environment expertise, advisory, and decision preparation work.

\textit{c) attitude}

- Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.

- Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.

- Open to professional cooperation with specialists related to their profession but involved in other areas.
- Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

- Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

- Efforts to solve tasks and make management decisions by being aware of the opinions of the colleagues supervised, possibly in cooperation therewith.

- Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

- Sharing experiences with colleagues, thus promoting their development.

d) autonomy and responsibility

- Taking responsibility towards society for their decisions made in the scope of environment protection.

- Performing environmental tasks individually and managing special environment protection work independently even in unexpected decision making situations.

- Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

- Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

11. Main training areas:

<table>
<thead>
<tr>
<th>According to the Regulation of 18/2016. (VIII. 5.) EMMI</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science basics (40-60 credits)</td>
<td>49</td>
</tr>
<tr>
<td>Economic and human knowledge (10-30 credits)</td>
<td>13</td>
</tr>
<tr>
<td>Technical and engineering knowledge (20-50 credits)</td>
<td>28</td>
</tr>
<tr>
<td>„Protection of environmental elements” knowledge (30-70 credits)</td>
<td>35</td>
</tr>
<tr>
<td>Environmental Analysis, Environmental Informatics (10-30 credits)</td>
<td>15</td>
</tr>
<tr>
<td>Environmental Management (10-30 credits)</td>
<td>9</td>
</tr>
<tr>
<td>Specific professional knowledge (40 credits)</td>
<td>39</td>
</tr>
<tr>
<td>Optional subjects (10 credits)</td>
<td>10</td>
</tr>
<tr>
<td>Thesis (15 credits)</td>
<td>15</td>
</tr>
<tr>
<td>Total:</td>
<td>210</td>
</tr>
</tbody>
</table>
12. Criteria prescribed:

Physical education: Each regular student is required to complete two semesters of Physical education. The subject is announced in semesters 2 and 3 in the model curriculum, with a load of 2 lessons per week.

Subjects to be completed in a foreign language: Each regular student participating in a bachelors training course in Hungarian is required to enroll into two professional courses offered by the university in English or German as criteria subjects, and to complete the respective testing required. In the event that a student failed to complete a criteria subject in the English language, they are required to certify their basic level English skills as provided in the Study and Examination Regulations.

Specialty language requirements:

Professional traineeship:

Professional traineeship of at least six weeks, organized at a location of professional practice. Professional traineeship is included in the criteria prescribed.

13. Foreign language requirements (to earn the degree):

The aim of the language training at the university is to help students pass the language exam which is a training and output requirement to issue the diploma and to develop professional language skills. The requirement of issuing the diploma in the basic training is an intermediate, level B2, complex general language exam.

14. Knowledge verification:

a) during the study period, by written or verbal reports, written (classroom) tests, by the evaluation of home assignments (designs, measurement records, etc.), mid-semester grading or signature,
b) by preliminary examination passed in the study period,
c) by examination or comprehensive examination passed in the examination period, and
d) by final examination.

15. Criteria for admission to a final examination:

a) Final completion certificate (absolutorium) granted,
b) Thesis accepted by supervisor.

Admission to a final examination is subject to a final completion certificate being granted. A final completion certificate is issued by a higher education institution to a student who has complied with the study and examination requirements prescribed in the curriculum and
completed the professional traineeship required – except for meeting the foreign language requirement and completion of the thesis —, and has acquired the credits prescribed.

16. Parts of the final examination:

The final examination consists of defending the thesis and oral examinations taken on the subjects prescribed in the curriculum (time allowed for preparation: at least 30 minutes per subject), to be passed by the student consecutively within the same day. Subjects (subject groups) comprising, in the aggregate, a body of knowledge corresponding to at least 20 and up to 30 credit points may be designated for the final examination.

The list of questions of the oral examination is made available to candidates 30 days before the date of the final examination.

Candidates may start the examination if their thesis has been accepted by the final examination board with at least sufficient (2) qualification. Criteria for correcting a failed thesis are defined by the competent institute.

17. Result of the final examination:

The weighted average of the grades of the thesis and the oral part of the final examination – taking into consideration the number of subjects included in the final examination – as follows:

\[Z = \frac{SZD + Z1+Z2+...+Zm}{1+m}. \]
18. Criteria for issuing a diploma:

a) Successful final examination,

b) Compliance with the foreign language requirement.

19. Dual training option: -

20. Cooperative training option:

Cooperative training is a voluntary supplementary practice module linked to a regular bachelors training course at the university, in the framework of which the university and a business company, firm or institution cooperate in order to enable university students to acquire professional experience as specified in the educational objective.

21. Date of entry into effect: 01 September 2017.

Dated in Budapest, 28 November 2016.

……………………

Dr. habil Kisfaludy Márta
Dean
CURRICULUM
Environmental Engineering Programme

Course Structure

| Code | Subjects | weekly hours | Credit hour | 1. | 2. | 3. | 4. | 5. | 6. | 7. | Required preliminary knowledge |
|------|----------|--------------|-------------|----|----|----|----|----|----|-------------------------------|
| GSXVG1 | Mathematics I | 6 | 6 | | | | | | | | |
| GSXVG2 | Mathematics II | 6 | 6 | | | | | | | | |
| GGXKG1 | Chemistry | 2 | 2 | | | | | | | | |
| GGXKG2 | Analytical Chemistry | 1 | | | | | | | | | |
| RKXFI1 | Physics I | 2 | 2 | | | | | | | | |
| RKXFI2 | Physics II | 2 | 2 | | | | | | | | |
| RKXAK1 | Environmental Hazards | 3 | 3 | | | | | | | | |
| RKXAK2 | Environmental Health | 2 | 2 | | | | | | | | |
| RKXKV1 | Environmental Management | 2 | 2 | | | | | | | | |
| RKXBI2 | Geoinformatics | 2 | 2 | | | | | | | | |
| RKXMA2 | Technical Engineering skills | 2 | 2 | | | | | | | | |
| RKXMA1 | Project work | 2 | 2 | | | | | | | | |
| RSXVR1 | Mathematical tools | 2 | 2 | | | | | | | | |
| RSXVR2 | Environmental aspects (5-15 Cr) | 5 | 5 | | | | | | | | |
| RSXVR3 | Geoinformatics (GIS) | 2 | 2 | | | | | | | | |
| RSXVR4 | Informatics | 2 | 2 | | | | | | | | |
| RKXFK1 | Safety engineering | 2 | 2 | | | | | | | | |
| RKXFK2 | Fire protection | 2 | 2 | | | | | | | | |
| RKXFK3 | Electrical safety | 2 | 2 | | | | | | | | |
| RKXFK4 | Environmental management | 2 | 2 | | | | | | | | |
| RKXFK5 | Environmental analysis | 2 | 2 | | | | | | | | |

Program Hours

- Mathematics I: 6 hours
- Mathematics II: 6 hours
- Chemistry: 2 hours
- Analytical Chemistry: 1 hour
- Physics I: 2 hours
- Physics II: 2 hours
- Environmental Hazards: 3 hours
- Environmental Health: 2 hours
- Environmental Management: 2 hours
- Geoinformatics: 2 hours
- Technical Engineering skills: 2 hours
- Project work: 2 hours
- Mathematical tools: 2 hours
- Environmental aspects: 5 hours
- Geoinformatics (GIS): 2 hours
- Informatics: 2 hours
- Safety engineering: 2 hours
- Fire protection: 2 hours
- Electrical safety: 2 hours
- Environmental management: 2 hours
- Environmental analysis: 2 hours

Total Credits:

- Mathematics I: 6
- Mathematics II: 6
- Chemistry: 2
- Analytical Chemistry: 1
- Physics I: 2
- Physics II: 2
- Environmental Hazards: 3
- Environmental Health: 2
- Environmental Management: 2
- Geoinformatics (GIS): 2
- Technical Engineering skills: 2
- Project work: 2
- Mathematical tools: 2
- Environmental aspects: 5
- Geoinformatics (GIS): 2
- Informatics: 2
- Safety engineering: 2
- Fire protection: 2
- Electrical safety: 2
- Environmental management: 2
- Environmental analysis: 2

Total Credits: 30

Valid from 01.09.2017.

Dean:

Dr. habil. Kisfaludy Márta
Weekly Teaching Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Subjects</th>
<th>Credit</th>
<th>Required Preliminary Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>RTWKK1ABNE</td>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>RTWKK2ABNE</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>RMWK1ABNE</td>
<td>3 5</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>RMWK2ABNE</td>
<td>2 3</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>RWTTIABNE</td>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>RWTTIABNE</td>
<td>3 5</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>RMWI1ABNE</td>
<td>4 5</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>RMWGTABNE</td>
<td>4 5</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>RMWGTABNE</td>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>RMWGTABNE</td>
<td>3 5</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>RMWGTABNE</td>
<td>4 5</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>RTWCI1ABNE</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>RTWCI1ABNE</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>RMWDS1ABNE</td>
<td>4 5</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>RMWDS1ABNE</td>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>RKWSI1ABNE</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>RMWBI1ABNE</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Optional subjects I</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Optional subjects II</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Optional subjects III</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Optional subjects V</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Thesis</td>
<td>15 15</td>
<td></td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th>Lecture (L)</th>
<th>Classroom (Cw)</th>
<th>Laboratory work (Lw)</th>
<th>Requirement (Req)</th>
<th>Credits (Cr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>190</td>
<td>216</td>
<td>56</td>
<td>191</td>
<td>210</td>
</tr>
</tbody>
</table>

Ratio of Experimental Teaching Hours (%)

| | 63 |

Subject of the Final Examination

1. Environmental elements and nature protection
2. Technologies, management systems and environmental protection in creative industries

Criteria Required

- 6 weeks

Professional Practice

- 6 weeks
<table>
<thead>
<tr>
<th>Code</th>
<th>Subjects</th>
<th>Weekly teaching hours</th>
<th>Required preliminary knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture (L)</td>
<td>Classroom (Cw)</td>
</tr>
<tr>
<td>61</td>
<td>Environmental aspects of settlement operation I</td>
<td>2 3</td>
<td>0 0</td>
</tr>
<tr>
<td>62</td>
<td>Environmental aspects of settlement operation II</td>
<td>5 5</td>
<td>0 0</td>
</tr>
<tr>
<td>63</td>
<td>Environmental quality management system</td>
<td>4 5</td>
<td>0 0</td>
</tr>
<tr>
<td>64</td>
<td>Environmental management and community development</td>
<td>5 5</td>
<td>0 0</td>
</tr>
<tr>
<td>65</td>
<td>Environmental aspects of settlement operation I</td>
<td>2 3</td>
<td>0 0</td>
</tr>
<tr>
<td>66</td>
<td>Environmental aspects of settlement operation II</td>
<td>5 5</td>
<td>0 0</td>
</tr>
<tr>
<td>67</td>
<td>Environmental quality management system</td>
<td>4 5</td>
<td>0 0</td>
</tr>
<tr>
<td>68</td>
<td>Environmental management and community development</td>
<td>5 5</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Total weekly teaching hours: 190

Total experimental teaching hours: 119

Ratio of experimental teaching hours (%): 63

Exam (e): 4

Term mark (tm): 4

Physical education I: 2

Physical education II: 2

Criteria subject in English or German 1: 2

Criteria subject in English or German 2: 2

Professional practice: 6 weeks

Thesis: 15

Total: 190

Exam (e): 4

Term mark (tm): 4

Professional practice: 6 weeks

Thesis: 15

Total: 190

1. Environmental elements and nature protection
2. Environmental Public Administration Skills, Environmental Aspects of Settlement Development and Operation
<table>
<thead>
<tr>
<th>Code</th>
<th>Subjects</th>
<th>Weekly teaching hours</th>
<th>Semesters</th>
<th>Required prelineary knowledge</th>
<th>Differentiated professional knowledge</th>
<th>Optional subjects</th>
<th>Total weekly teaching hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Environmental aspects and nature protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The sources and stocks of renewable energies and their practical usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subject of the final examination:
1. Environmental elements and nature protection
2. The sources and stocks of renewable energies and their practical usage

Dr. Judit Fiala

Valid from 01.09.2017.
SUBJECT DESCRIPTIONS
Science basics (40-60 cr.):

<table>
<thead>
<tr>
<th>Title of the course: Mathematics I.</th>
<th>NEPTUN-code: NMXAN1HBNE</th>
<th>Weekly teaching hours: l+cw+lb 3+3+0</th>
<th>Credit: 6</th>
<th>Exam type: tm</th>
</tr>
</thead>
</table>

Course leader: | Position: | Required preliminary knowledge: |

Curriculum:
The main goal of the course is to introduce the set theory marks and to describe the algebraic and geometric properties of the real number line, complex numerical plane and the three-dimensional space. Additionally, with the help of the concepts of sequences, real functions and convergence to construct univariate differential and integral computing in a way which makes the students capable of solving any technical / mathematical / physical problems that arise in subsequent studies.

+ using Matlab's numerical / symbolic mathematics software suite in the education.

Professional competencies:
Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Literature:
Title of the course: Mathematics II
NEPTUN code: RKXMA2ABNE
Weekly teaching hours: l+cw+lb 3+3+0
Credit: 6
Exam type: e
Course leader: Vilmos Zoller Dr
Position: college professor
Required preliminary knowledge: NMXAN1HBNE

Curriculum:

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Literature:

Comment:
Title of the course: Chemistry I.
NEPTUN-code: RMXCA1KBNE
Weekly teaching hours: 1+cw+lb
2+0+2
Credit: 5
Exam type: e

Course leader: Tamásné Nyitrai Cecília Dr
Position: college professor

<table>
<thead>
<tr>
<th>Required preliminary knowledge:</th>
</tr>
</thead>
</table>

Curriculum

The goal of the subject is to acquire the essential knowledge of the structure, properties and transformations of chemical substances. The subject discusses the characteristics and reactions of the substances through the formation of unique atomic and molecular structures through chemical bonds and interactions to the characterization of homogeneous and heterogeneous sets. It also describes the grouping, production and most important applications of elements and inorganic compounds with students. In practice, students practice solving the most important computational tasks in the field of inorganic chemistry (writing and sorting reaction equations based on oxidation numbers, stoichiometry, concentration of solutions concentration, conversion of concentration units, gas laws).

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Literature

Title of the course: Chemistry II.

NEPTUN-code: RMXCA2KBNE

Weekly teaching hours: 1+cw+lb
2+0+2

Credit: 5

Exam type: e

Course leader: Tamásné Nyitrai Cecília Dr

Position: college professor

Required preliminary knowledge: RMXCA1KBNE

Curriculum:

The goal of the subject is the transfer of the basic concepts of organic chemistry required for other professional subjects. During the exercises, the students can acquire basic laboratory knowledge that is essential for the successful completion of other professional subjects.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Literature:

Title of the course: Analytical chemistry
NEPTUN-code: RKKXAK1ABNE
Weekly teaching hours: 1+cw+lb
1+02
Credit: 3
Exam type: tm

<table>
<thead>
<tr>
<th>Course leader:</th>
<th>Position:</th>
<th>Required preliminary knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mészárosné Dr Ágnes Bálint Dr</td>
<td>associate professor</td>
<td>RMXCA2KBNE</td>
</tr>
</tbody>
</table>

Curriculum:

Subject of the analytical chemistry and its role in environmental protection. Qualitative analysis (cations, anions). Basics of volumetric analysis (titrimetric methods) and areas of application (acid-base, precipitation titrating, oxydo-reduction titration, conductometry etc). The enrichment and separation of trace substances principles various environmental media (liquid-liquid extraction, solid phase, microwave digestion, absorption pipes, evaporation, centrifugation, etc.). Fundamentals and types of chromatography (gas chromatography, liquid chromatography, ion chromatography, capillary electrophoresis ash etc). The principle and types of Molecular spectroscopy (UV-visible, infrared, fluorescence-, mass spectroscopy, etc.). Principle and types of Atomic spectroscopy (atomic absorption-, ICP, X-ray fluorescence spectroscopy etc). Confidence of different analytical methods, validation, standardization.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

Able to perform environmental impact assessments and to participate in compiling impact studies.

Able to apply in practice as well the regulations and requirements of health and safety, fire protection, and safety engineering as related to their special field.

Literature:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment:</td>
<td></td>
</tr>
</tbody>
</table>
Title of the course:
Physics I

NEPTUN-code:
RKXFI1ABNE

Weekly teaching hours:
1+1+0

Credit:
3

Course leader:
Sándor Pekker Dr

Position:
research professor

Exam type:
tm

Required preliminary knowledge:
There is no requirement

Curriculum

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Literature

1. Serway Jewett: Physics for Scientist and Engineers
2. Lóránt Szabó: Physics for Undergraduate Students
3. www.physicsclassroom.com
Title of the course:
Physics II

NEPTUN-code:
RKXFI2ABNE

Weekly teaching hours:
l+cw+lb
1+1+0

Credit:
3

Exam type:
e

Course leader:
Sándor Pekker Dr

Position:
research professor

Required preliminary knowledge:
RKXFI1ABNE

Curriculum

Professional competencies:
Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.
Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.
Open to professional cooperation with specialists related to their profession but involved in other areas.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Literature
1. Serway Jewett: Physics for Scientist and Engineers
2. Lóránt Szabó: Physics for Undergraduate Students
3. www.physicsslassroom.com

Comment:
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>Biology I.</th>
<th>NEPTUN-code:</th>
<th>RKXBI1ABNE</th>
<th>Weekly teaching hours:</th>
<th>l+cw+lb</th>
<th>Credit:</th>
<th>3</th>
<th>Exam type:</th>
<th>tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course leader:</td>
<td>Hosam, Bayoumi Dr</td>
<td>Position:</td>
<td>university private professor, associate professor</td>
<td>Required preliminary knowledge:</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curriculum:

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection
Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.
Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.
Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.
Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.
Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.
Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.
Sharing experiences with colleagues, thus promoting their development.
Taking responsibility towards society for their decisions made in the scope of environment protection.

Literature:

- Lecture’s notice and PPT
- Richard Hunt et al. (2011): Microbiology and Immunology On-line. The Board of Trustees of the University of South Carolina

Comment: Attendance of lectures is compulsory! Examination requirements: It is not allowed to be absence more than 4 lectures. 2 midterms with at least a pass grade (50-64 = 2%). Requirements to pass the course: Two written exams. Solve the Homework and write an assay. Term marks: 85-100%: excellent (5), 75-84%: good (4), 65-74%: satisfactory (3), 50-64%: pass (2), 0-49%: fail (1).
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>NEPTUN-code:</th>
<th>Weekly teaching hours:</th>
<th>Credit:</th>
<th>Exam type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology II.</td>
<td>RKXBI2ABNE</td>
<td>1+2+0</td>
<td>3</td>
<td>e</td>
</tr>
</tbody>
</table>

Course leader:
Hosam, Bayoumi Dr

Position:
university private professor, associate professor

Required preliminary knowledge:
RKXBI1ABNE

Curriculum:

Professional competencies:
Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Sharing experiences with colleagues, thus promoting their development.

Taking responsibility towards society for their decisions made in the scope of environment protection.

Literature:

<table>
<thead>
<tr>
<th>Literature:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PowerPoint presentation of lectures</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

|--|

<table>
<thead>
<tr>
<th>Meiosis and the Paradox of Sex in Nature, Meiosis, Dr. Carol Bernstein (Ed.)</th>
</tr>
</thead>
</table>

|--|

|--|

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment: Attendance of lectures is compulsory! Examination requirements: It is not allowed to be absence more than 4 lectures. 2 midterms with at least a pass grade (50-64 = 2%). Requirements to pass the course: Two written exams. Solve the Homework and write an assay and to pass the oral examination.</td>
</tr>
<tr>
<td>Title of the course: Electrotechnics</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>NEPTUN-code: RKXEL1ABNE</td>
</tr>
<tr>
<td>Weekly teaching hours: l+c+w+lb</td>
</tr>
<tr>
<td>1+1+0</td>
</tr>
<tr>
<td>Credit: 2</td>
</tr>
<tr>
<td>Exam type: tm</td>
</tr>
<tr>
<td>Course leader: Sándor Pekker Dr</td>
</tr>
<tr>
<td>Position: research professor</td>
</tr>
<tr>
<td>Required preliminary knowledge: There is no requirement</td>
</tr>
</tbody>
</table>

Curriculum

Professional competencies:

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty. Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world. Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks. Sharing experiences with colleagues, thus promoting their development.

Literature

2. Don Johnson: Fundamentals of Electrical Engineering I, Connexions, 2010; https://cnx.org/contents/d442r0wh@9.72@g9deOnx5@19/Themes; 1999-2018, Rice University; ID: 778e36af-4c21-4ef7-9c02-dae860eb7d14@9.72

<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>NEPTUN-code:</th>
<th>Weekly teaching hours:</th>
<th>Credit:</th>
<th>Exam type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecology</td>
<td>RKXÖK1ABNE</td>
<td>$l+cw+lb$ $2+1+0$</td>
<td>3</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course leader:</th>
<th>Position:</th>
<th>Required preliminary knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosam, Bayoumi Dr</td>
<td>university private professor</td>
<td>RKXB12ABNE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curriculum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ecological concepts and principles (environmental tolerance, and indications limitation, examples of the general principle indicator principle, the principle of general indication, the complementation principle; Multiplurális the environmental principle). Ecology, biology subject of continually, the organization above the individual units and scales: the organization over individual units); levels of biological organization, particularly with regard to the supra-organizational levels, definitions and characterizations. The interaction between man and nature, biological and cultural coevolution of biological complementarity of capacity and mediation systems. The population of the association and community life, the biome and biosphere. The concepts behind and plant populations; properties and structures; Ecology of clonal herbs. Uniformity of globalization, identifying global problems, search for solutions; the need for sustainable livelihoods and opportunities, diversifying globalization. The competition and Herbivorian, their role in the regulation of communities; intra- and interspecific competition, competitive exclusion and stable coexistence; a niche subdivision and segregation plant associations. Theories Association: Clements - Gleason core hypotheses. Plant community structure (the space-time structure, the main reasons for their formation); and textures (floral elements, cônotype, etc.); diversity, diversity indices; diversity maintenance mechanisms. The interpretation of the environment and nature protection; the environment and tolerance: the relationship between population and environment; based on the turnover. The concept of primary production, distribution of the earth; primary productivity and energy utilization producers, the primary level; the trophic structure of food chains and webs; material and energy flows, on biogeochemical cycles; limiting the production of primary environmental factors: light, heat, water, CO$_2$, nutrients. Communities change in time, the main succession types: a secular, primary, secondary, biotic, ecogenetic and plant cover; a niche subdivision changes during succession; Basics of the island biogeography, ecological isolates; stability. The main indicator of ecosystem status, the system is interpreted as characteristics of organisms communities. The biosphere and its history; The concept of biodiversity, importance, need for protection; Gaia Hypothesis; Change the associations and global biogeochemical cycles and their consequences; The history of human nature conversion activities; the world food problem; fresh water shortages; the growth of the world population problem; world economic growth, economic globalization; environmental technologies, environmental protection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professional competencies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection</td>
</tr>
<tr>
<td>Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.</td>
</tr>
</tbody>
</table>
Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Sharing experiences with colleagues, thus promoting their development.

Taking responsibility towards society for their decisions made in the scope of environment protection.

Literature:

<table>
<thead>
<tr>
<th>Lectures PPT</th>
</tr>
</thead>
</table>

Comment: Attendance of lectures is compulsory! Examination requirements: It is not allowed to be absence more than 4 lectures. 2 midterms with at least a pass grade (50-64 = 2%). Requirements to pass the course: Two written exams. Solve the Homework and write an assay and to pass the oral examination.
Title of the course: Earth sciences knowledge

NEPTUN-code: RKXFT1ABNE

Weekly teaching hours: l+cw+lb 2+0+2

Credit: 4

Exam type: tm

Course leader: Konrád Lájer Dr

Position: associate professor

Required preliminary knowledge: -

Curriculum

The geological history of the Earth. The internal structure of the Earth (the crust, the mantle, the core). Volcanism (type of volcanoes, volcanoes and plate boundaries) and plate tectonics. Rocks (igneous, sedimentary and metamorphic) and minerals classification systems. Major types of landforms (plains, mountains, cratons). Exogenous processes and main landform methods (the work of rivers, the formation of shores and coastlines, glacial processes, the work of wind). Main features of surface waters (rivers and lakes) and waters below the surface (groundwater, confined water, crack water). Karst processes (karst forms on or below the surface). Main soil types in the world (definition, functions, and major soil formations).

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Literature

2. PPT files on the homepage of Moodle learning system

Comment:
Title of the course: Environmental studies

NEPTUN-code: RKXKT1ABNE
Weekly teaching hours: l+ cw+ lb
2+0+0
Credit: 3
Exam type: e

Course leader: Konrád Lájer Dr
Position: associate professor

Required preliminary knowledge: -

Curriculum

The purpose of the course in environmental engineer training is to review the basic knowledge about elements of environmental system, the basic environmental concepts, to disclose antropogenous effects those influence unfavourable way the state of environment. Reviewing basic principles which can be used for diminishing unfavourable effects that influence environmental systems, to familiarize requirements that are necessary in favour of sustainability. Types of environmental harms, the process of contamination. Causes of global issues, their effects and possibilities of reducing. Means which are used for enhancing the effectiveness of environmental protection: ecological footprint calculation, lifecycle analysing, eco-label. Characterize biotic and abiotic factors of ecological system, importance of biological-geochemical cycles research. Features, harms and protection of atmosphere, hydrosphere and lithosphere. Specific effects of noise and vibration caused by human activities and its alleviating possibilities. Reviewing elements of waste management pyramid. Application effects of different types of energy sources.

Professional competencies:

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.
Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.
Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Literature

1. Visualizing Environmental Science, 4th 2014, Wiley
2. PPS file sin Moodle and recommended literature sources

Comments:
Economic and human knowledge (10-30cr.):

<table>
<thead>
<tr>
<th>Subject:</th>
<th>NEPTUN-code:</th>
<th>Courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroeconomics</td>
<td>GGXKG1EBNE</td>
<td>full time: 2lect/0pr/0lab</td>
</tr>
</tbody>
</table>

Credits: 2

Requirements: full time: mid-class mark (semester credit)

Terms of pre-studies: -

Responsible lecturer: András Medve Dr

Status: associate professor

Faculty and Institution:

Keleti Faculty of Business and Management
Institute of Economics and Social Sciences

Way of reporting and evaluation:

Exam-semester credit: written exam, 40 minutes, 40 points, (2) satisfactory, from 50%

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.

Able to perform public administrative and authority tasks related to environment protection after getting acquainted with the duty assigned to them.

Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Theme and Subject:

Literature

3. Ian Jaques: Mathematics for Economics and Business, Addison-Wesley
Subject: Microeconomics
NEPTUN-code: GGXKG2EBNE
Courses: full time: 1lect/1pr/0lab

<table>
<thead>
<tr>
<th>Credits: 2</th>
<th>Requirements: full time: mid-class mark (semester credit)</th>
<th>Terms of pre-studies: GGXKG1EBNE</th>
</tr>
</thead>
</table>

Responsibility:
Responsible lecturer: András Medve Dr
Status: associate professor
Faculty and Institution: Keleti Faculty of Business and Management, Institute of Economics and Social Sciences

Way of reporting and evaluation:
Exam-semester credit: written exam, 40 minutes, 40 points, (2) satisfactory, from 50%

Professional competencies:
Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Able to participate in project and proposal implementation and audit tasks based on their knowledge.
Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.
Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Theme and Subject:

Literature
1. Ian Jaques: Mathematics for Economics and Business, Addison-Wesley
2. David Begg, Stanley Fischer, Rudiger Dornbusch: Economics, Third Edition
<table>
<thead>
<tr>
<th>Name:</th>
<th>ENTERPRISE ECONOMICS I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEPTUN-code:</td>
<td></td>
</tr>
<tr>
<td>regular: GSXVG1EBNE</td>
<td></td>
</tr>
<tr>
<td>part time:</td>
<td></td>
</tr>
<tr>
<td>Number of periods/week: (lec/sem/lab)</td>
<td></td>
</tr>
<tr>
<td>regular: 2/0/0</td>
<td></td>
</tr>
<tr>
<td>part time:</td>
<td></td>
</tr>
<tr>
<td>Credits:</td>
<td>2</td>
</tr>
<tr>
<td>Requirement:</td>
<td>mid-term grade</td>
</tr>
<tr>
<td>Prerequisite:</td>
<td></td>
</tr>
<tr>
<td>Responsible:</td>
<td>Ferenc Katona PhD</td>
</tr>
<tr>
<td>Position:</td>
<td>senior lecturer</td>
</tr>
<tr>
<td>Faculty and Institute name:</td>
<td>Keleti Faculty of Business and Management</td>
</tr>
<tr>
<td></td>
<td>Institute of Management and Organization</td>
</tr>
</tbody>
</table>

Course description

The aim of the course is for students to acquire knowledge which will enable them to deal with economic and financial problems from a corporate point of view. Students are introduced to the concepts of enterprise, objectives, business environment, business forms, value creation, production processes, organizational forms, strategy creation and corporate marketing. Students also gain an insight into the development of enterprises, different development strategies, problems of growing, optimal operational size and various other essential aspects of managing a corporation.

Professional competencies:

Able to perform public administrative and authority tasks related to environment protection after getting acquainted with the duty assigned to them.
Able to take part in environment expertise, advisory, and decision preparation work.
Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.
Open to professional cooperation with specialists related to their profession but involved in other areas.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.
Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.
Taking responsibility towards society for their decisions made in the scope of environment protection.
Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Literature

<table>
<thead>
<tr>
<th>Name:</th>
<th>Enterprise Economics II.</th>
<th>NEPTUN-code:</th>
<th>Number of periods/week:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>regular:</td>
<td>(lec/sem/lab)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GSXVG2EBNE</td>
<td>regular: 1/1/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>part time:</td>
<td>part time:</td>
</tr>
<tr>
<td>Credits: 2</td>
<td>Requirement: mid-term grade</td>
<td>Prerequisite:</td>
<td>Enterprise Economics I. (GSXVG1EBNE)</td>
</tr>
<tr>
<td>Responsible:</td>
<td>Ferenc Katona, Ph.D.</td>
<td>Position: senior lecturer</td>
<td>Faculty and Institute name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Keleti Faculty of Business and Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Institute of Management and Organization</td>
</tr>
</tbody>
</table>

Course description

The aim of the course is to further develop the students' basic business and economic knowledge and thinking, keeping the practical requirements in mind, with appropriate theoretical knowledge acquisition. Students are introduced into company asset management, labor management issues, cost management, cost accounting methodology, analysis of the economics of investments and the basics of corporate finance. Students also gain an insight into basic marketing concepts and methods.

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Able to carry out management duties subject to sufficient professional experience.
Able to take part in environment expertise, advisory, and decision preparation work.
Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.
Open to professional cooperation with specialists related to their profession but involved in other areas.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.
Taking responsibility towards society for their decisions made in the scope of environment protection.
Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Literature

<table>
<thead>
<tr>
<th>Name: Basics of Management</th>
<th>NEPTUN-code: regular: GVXME1EBNE</th>
<th>Number of periods/week: (lec/sem/lab) regular: 1/1/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits: 3</td>
<td></td>
<td>Part time:</td>
</tr>
<tr>
<td>Requirement: mid-term grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible: Bianka Parragh, Ph.D.</td>
<td>Position: senior lecturer</td>
<td>Faculty and Institute name: Keleti Faculty of Business and Management Institute of Enterprise Management</td>
</tr>
</tbody>
</table>

Course description

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Able to participate in project and proposal implementation and audit tasks based on their knowledge.
Able to carry out management duties subject to sufficient professional experience.
Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.
Able to take part in environment expertise, advisory, and decision preparation work.
Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.
Open to professional cooperation with specialists related to their profession but involved in other areas.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.
Efforts to solve tasks and make management decisions by being aware of the opinions of the colleagues supervised, possibly in cooperation therewith.
Sharing experiences with colleagues, thus promoting their development.
Performing environmental tasks individually and managing special environment protection work independently even in unexpected decision making situations.

Literature
<table>
<thead>
<tr>
<th>Compulsory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dr. Bianka Parragh (2011): “Management” – digitally available textbook of theory and practice, Óbuda University, VMI</td>
</tr>
<tr>
<td>Recommended:</td>
</tr>
<tr>
<td>• Derek Rowentree (2006): The manager’s checklists, Pearson Prentice Hall</td>
</tr>
</tbody>
</table>
Name: Project management
NEPTUN-code: RMEPR1KBNE
Number of periods/week:
(lec/sem/lab)
1+1+0

Credits: 3
Requirement: exam
Prerequisite:

Responsible: Nagyné Orsolya Szabó Dr
Position: senior lecturer
Faculty and Institute name:
Rejtő Sándor Faculty of Light Industry and Environmental Engineering, Institute of Industrial Product Design

Course description

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Able to participate in project and proposal implementation and audit tasks based on their knowledge.
Able to carry out management duties subject to sufficient professional experience.
Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.
Able to take part in environment expertise, advisory, and decision preparation work.
Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.
Open to professional cooperation with specialists related to their profession but involved in other areas.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.
Efforts to solve tasks and make management decisions by being aware of the opinions of the colleagues supervised, possibly in cooperation therewith.
Sharing experiences with colleagues, thus promoting their development.
Performing environmental tasks individually and managing special environment protection work independently even in unexpected decision making situations.

Literature

PPT files on the homepage of Moodle learning system
Environmental elements protection (30-70cr.):

<table>
<thead>
<tr>
<th>Title of the course: Environmental elements protection I. - Water quality protection</th>
<th>NEPTUN-code: RKXKE1ABNE</th>
<th>Weekly teaching hours: lecture+practical work+lab work 1+2+0</th>
<th>Credit: 3</th>
<th>Exam type: tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course leader: Bodáné Rita Kendrovics Dr</td>
<td>Position: associate professor</td>
<td>Required preliminary knowledge (with code too): -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Description

Course objective is to provide overall knowledge about topics of water quality protection and water management. Within this scope it deals in details with water circulation in the nature and in the society and with water incidences available for residential utilization. It examines impacts and impurities affecting natural waters of the industrializing world and water quality resulting from that, together with monitoring possibilities. It reviews general questions of water and water management, like basics of water management, fundamentals of water resources management, current and future water demands. It shows different types of water utilization and the return options of used waters to the nature. It presents basic hydrological notions, transmission of impurities in surface and subsurface waters, as well as impacts of oil pollution to water quality and possibilities of environmental cleanup.

Professional competencies:

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

Able to carry out assignments as environmental officer.

Able to carry out management duties subject to sufficient professional experience.

Literature

Dr. Pregun, Csaba: Hydrology, Publication date 2011, Szerzői jog © 2011 Debreceni Egyetem. Agrár- és Gazdálkodástudományok Centruma, in e-learning system

R.C.Gaur: Basic environmental engineering, New Age International Publishers. 2008 in e-learning system
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>NEPTUN-code:</th>
<th>Weekly teaching hours:</th>
<th>Credit:</th>
<th>Exam type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental elements protection II. - Air quality protection</td>
<td>RKXKE2ABNE</td>
<td>(l+cw+lb) 1+2+0</td>
<td>3</td>
<td>tm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course leader:</th>
<th>Position:</th>
<th>Required preliminary knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodáné Rita Kendrovics Dr</td>
<td>associate professor</td>
<td>There is no requirement</td>
</tr>
</tbody>
</table>

Curriculum

Topics: Structure of atmosphere, ambience effects, sunlight radiation, greenhouse effect, the spread of pollutants, self-purification, air quality protection limit values, imission emission standards. Dust technical basic concepts, methods of measurement, dust chambers, filters, cyclones, electro filters.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Able to carry out assignments as environmental officer.

Able to carry out management duties subject to sufficient professional experience.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Literature

1. Nicholas P. Cheremisinoff, Ph.D. : Handbook of Air Pollution Prevention and Control
2. Margeret Pence - Handbook of Air Pollution control Systems and Devices
3. Roy M. Harrison - Handbook of Air Pollution Analysis 2 Sub Edition
4. Joel M. Haight Ph.D., P.E. - Control of Air Pollution

Comment:
Curriculum

The aims of this course to present the basic knowledge of the soil - soil concept, features, soil forming materials, physical properties of soil, soil nutrient supply, soil classification. It summarizes the analysis of soil degradation processes and the impacts of human activities on soil quality within the soil conservation process. It provides comprehensive knowledge about soil organic and inorganic pollutants, their effects and the factors determining the spread of contamination. It presents the various remediation technologies and opportunities for remediation of contaminated sites and international experience. A particular lecture is devoted to on-site (in-situ, ex-situ) and off-site procedures. Furthermore, a special lecture deals with the various polluting substances and their detection and termination.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

Able to apply environmental remediation methods, to prepare for and participate in remediation.

Able to carry out assignments as environmental officer.

Able to take part in environment expertise, advisory, and decision preparation work.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Literature

1. RPC Morgan: Soil Erosion and Conservation, National Soil Resources Institute, Cranfield University, Blackwell Publishing, 2005,

Title of the course: Environmental hazards I. - Noise and Vibration Protection

NEPTUN-code: RKXXA1ABNE

Weekly teaching hours: 2+1+0

Credit: 3

Exam type: tm

Course leader: Konrád Lájer Dr

Position: associate professor

Required preliminary knowledge: There is no requirement

Curriculum

The study of this subject can be divided into two main parts:

1. **Noise**, noise pollution and effect on human, physical describing of sound waves, sound levels (SWL, SPL, SIL) loudness and frequency (Fletcher-Munson curves), noise reduction methods, noise filters, noise measurement and calculation, noise map. Noise protection at the source, transmission path and receiver.

2. **Vibration**, vibration pollution, modelling of vibration (free and damped), levels in decibels (acceleration, velocity, displacement), forced oscillations, resonance frequency (Tacoma Narrows Bridge), effects of vibration on human depend on many factors, whole body and hand-arm vibrations, vibration absorption, vibration measurement. Vibration insulation and damping.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

Able to communicate both verbally and in writing in their mother tongue and in at least one foreign language, in respect of professional issues, and to continuously develop their professional skills as required.

Able to carry out assignments as environmental officer.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Literature

1. Serway Jewett: Physics for Scientist and Engineers

3. http://pcfarina.eng.unipr.it/Public/Acoustics-Course/Penn-State-Course/10_osp.pdf

Comment:
Title of the course:
Environmental hazards II. – Environmental radiation protection

NEPTUN-code:
RKXKÁ2ABNE

Weekly teaching hours:
1+1+0

Credit:
2

Exam type:
tm

Course leader:
Konrád Lájer Dr

Position:
associate professor

Required preliminary knowledge:
RKXFI2ABNE

Curriculum

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

Able to communicate both verbally and in writing in their mother tongue and in at least one foreign language, in respect of professional issues, and to continuously develop their professional skills as required.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Literature

1. Serway Jewett: Physics for Scientist and Engineers

Comment:
Title of the course: Environmental hazards III. - Waste Management

NEPTUN-code: RKXKÁ3ABNE

Weekly classes: lecture+practical work+lab work 2+0+0

Credit: 2

Exam type: e (written exam)

Course leader: Konrád Lájer Dr

Position: associate professor

Required preliminary knowledge (with Neptun code):

Course Description

The aim of the course is to introduce students to waste management technologies. The subject provides a comprehensive knowledge of theoretical concepts, types of waste quantity and composition of the waste. Furthermore, in the frame of the course, expectations and conceptions of the European Union’s waste management and the Sustainable Waste Management in Hungary will be taught.

The subject deals primarily with sustainable management of waste materials and the available technologies that treat those materials successfully. Moreover, the course contains knowledge about technological solutions like emission streams. Part of the curriculum includes municipal solid waste, used (wreck) cars, electronic waste, batteries, rubber, plastic, glass, construction waste, packaging waste and other types of waste generated by industrial activity. Waste recovery, recycling as possible enemy solutions and the necessary preparation technologies will be presented as well. During the semester, we will examine how the composition of the various areas (residential, agricultural, industrial, etc.) influences waste and environmental impacts and sustainability principles in waste management. It shows the importance of the connection between waste management plan and the steps that are taken to deal with waste and its legal context as well. Waste collection, reloading and delivery of technological progress will be discussed in detail. The course describes the technological possibilities of disposing waste, such as orderly disposal, disposal of thermal and chemical processes or mechanical-physical processes. Main fields of the subject:

- environmental issues; waste as an environmental issue; applying environmental science to the management of waste;
- managing legal issues and activities in the cleaning and waste industries; managing human resources in the cleaning and wastes industries;
- mechanical, biological and thermal treatment of waste;
- environmental laws of waste management;
- contaminated land; landfill processes.

Professional competencies:

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and
implement measurement plans; and to evaluate data.
Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste
treatment and processing at proposal level; to participate in preparing decisions; to
perform authority audits; and to take part in the operation of these technologies.
Able to carry out assignments as environmental officer.
Able to carry out management duties subject to sufficient professional experience.
Able to reveal deficiencies in the technologies applied and process risks and to initiate
mitigation measures after getting familiarized with the technology concerned.
Constantly upgrading their knowledge of environment protection by attending organized
professional development training courses.

Literature

Márton Herczeg: Municipal waste management in Hungary EEA project manager Almut
May 2012

European Commission (2012). Support to Member States in improving waste
management based on assessment of Member States’ performance. Screening Report.
Screening of all EU Member States’ waste management performance. DRAFT Version 1.
12 April 2012

Nijkerk Consultancy February 2001, 5th Revised edition (pp.1-254)

Ram Chandra: Environmental Waste Management, 2015 by Taylor and Francis Group,
U.S.
Title of the course: Environmental Technologies and Operations I - Water and waste-water treatment technologies

NEPTUN-code: RKXKV1ABNE

Weekly teaching hours:
lecture+practical work+lab work
1+2+0

Credit: 3

Exam type: e
(written exam)

Course leader: Bodáné Rita Kendrovics Dr

Position: associate professor

Required preliminary knowledge (with code too):
RKXKE1ABNE

Course Description

The course objective is to show water (drinking) and wastewater treatment technologies and the requirements of drinking water, law and standard of drinking water and cleaned wastewater. The first aim of this course is to provide technological knowledge about advanced drinking water treatment. Focus is on both, conventional and new, emerging technologies. The course discusses relevant unit processes involved, and their role and location in a typical treatment chain. Physical, chemical and biological unit processes will be covered in the course. Further emphasis is on the effect of treatment on water quality and the transformations taking place in the water phase.

The second aim of this course is to describe wastewater definition, types of wastewater, and components of wastewater and sewer systems. Introduces wastewater treatment steps: Pre-treatment, Primary, Secondary and Tertiary treatment steps and available technologies within each step.

Highlights treatment technologies and reuse of sludge remaining in large volumes at the end of the treatment process.

Professional competencies:

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.

Able to carry out management duties subject to sufficient professional experience.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Literature

Dr. Michael R. Templeton, Prof. David Butler: Introduction to wastewater treatment in e-learning system

Nicholas P. Cheremisinoff: Handbook of water and wastewater treatment technologies in e-learning system
<table>
<thead>
<tr>
<th>Title of the course: Environmental Technologies and Operations II.- Renewable energy</th>
<th>NEPTUN-code: RKXKV2ABNE</th>
<th>Weekly teaching hours: lecture+practical work+lab work 2+0+0</th>
<th>Credit: 2</th>
<th>Exam type: tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course leader: Bodáné Rita Kendrovics Dr</td>
<td>Position: associate professor</td>
<td>Required preliminary knowledge (with code too): -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Description

Professional competencies:

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Able to carry out management duties subject to sufficient professional experience.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.

Taking responsibility towards society for their decisions made in the scope of environment protection.

Literature

Title of the course: Public Health

NEPTUN-code: RKXKU1ABNE

Weekly teaching hours: 2+0+0

Credit: 2

Exam type: e

Course leader: Hosam, Bayoumi Dr.

Position: university private professor, associate professor

Required preliminary knowledge: RKXBI1ABNE

Curriculum:

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Able to participate creatively in engineering work based on their multidisciplinary skills.
as well as to adapt to continuously changing circumstances. Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions. Constantly upgrading their knowledge of environment protection by attending organized professional development training courses. Sharing experiences with colleagues, thus promoting their development. Taking responsibility towards society for their decisions made in the scope of environment protection.

Literature:

Lecture’s notice and PPT

Emerging Infectious Diseases www.cdc.gov/eid Vol. 22, No.10, October 2016
International travel and health (2013): Information on health risks for travellers. IBSN: 9789240686434
- Comment: Attendance of lectures is compulsory! Examination requirements: It is not allowed to be absence more than 4 lectures. 2 midterms with at least a pass grade (50-64 = 2%). Requirements to pass the course: Two written exams. Solve the Homework and write an assay and to pass the oral examination.
Title of the course:
Nature and landscape protection

NEPTUN-code:
RKXTT1ABNE

Weekly teaching hours:
l+cw+lb
1+2+0

Credit:
3

Exam type:
e

Course leader:
Konrád Lájer Dr

Position:
associate professor

Required preliminary knowledge:
-

Curriculum

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Literature

2. Stuart Chape et al.(edit) 2008: The world protected areas (statues, values and prospects in the 21th century), University of California Press (http://www.the-eis.com/data/literature/The%20worlds%20protected%20areas.pdf)

3. PPT files on the homepage of Moodle learning system

Comment:
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>NEPTUN-code:</th>
<th>Weekly classes:</th>
<th>Credit:</th>
<th>Exam type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Work</td>
<td>RKPPR1ABNE</td>
<td>lecture+practical work+lab work 0+0+2</td>
<td>4</td>
<td>tm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course leader:</th>
<th>Position:</th>
<th>Required preliminary knowledge (with Neptun code):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodáné Rita Kendrovics Dr</td>
<td>associate professor</td>
<td>RKXKE1ABNE, RKXKE2ABNE, RKXKÁ1ABNE</td>
</tr>
</tbody>
</table>

Course Description

The course aims to provide students expertise and experience in integrating and applying knowledge from previous courses, as well as to extend students’ skills in a certain field of environmental science. It is important to work on field, measure in genuine environment and lab and get experience in that in order to be able to solve complex problems in the future. Based on these experiences on field, the problem-solving skills of the students will improve. Moreover, due to field work, students’ environmental awareness will be increased.

During the semester, students are working in small groups (4 person max.). Each group gets a different certain environmental problem to solve, from localizing the problem to finding the most appropriate solution for that. At the end of the semester, students have to present their project work and solutions in detail, and hand in a written report as well.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Taking responsibility towards society for their decisions made in the scope of environment protection.

Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Literature

Curriculum in the e-learning system

ppt of the lesson
Title of the course: Environmental impact assessment

NEPTUN-code: RKXHV1ABNE

Weekly classes: lecture+practical work+lab work 1+1+0

Credit: 2

Exam type: tm

Course leader: Imre Biczó Dr

Position: senior research fellow

Required preliminary knowledge (with Neptun code):

Course Description
Students get the concept of impact assessment and to study the methodology of impact assessments. Learn the main steps of creating the environmental impact assessment and it’s purpose, as well as the structure of the environmental management system and the methodology of environmental auditing. To get know with the procedures that occur during the environmental engineering practices within the impact assessment methodology. The objective of this course is attitude shaping and transferring knowledge which can be used in practice.

Professional competencies:
Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data. Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies. Performing environmental tasks individually and managing special environment protection work independently even in unexpected decision making situations. Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Literature
Technical engineering skills (20-50cr.):

<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>NEPTUN-code:</th>
<th>Weekly teaching hours:</th>
<th>Credit:</th>
<th>Exam type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical mechanics</td>
<td>RKXME1ABNE</td>
<td>1+2cw+4lb 2+2+0</td>
<td>4</td>
<td>tm</td>
</tr>
</tbody>
</table>

Course leader: Lóránt Szabó Dr
Position: senior lecturer
Required preliminary knowledge: There is no requirement

Curriculum

Engineering mechanics is the application of mechanics to solve problems involving common engineering elements. The goal of this Engineering Mechanics course is to expose students to problems in mechanics as applied to plausibly real-world scenarios. Dividing of Engineering mechanics. Physical quantities.

Kinematics. The kinematics of a point. Basic concepts, uniform and uniformly changing motion. Projectile motions, circular motion, harmonic motion, swinging motion. Kinematics of the rigid body. Basic concepts, velocity and acceleration states, elemental and finite motions. The kinematics of relative motions.

Kinetics (part of dynamics). Kinetics of the material point, axioms, general theorems. The free, forced and relative motion of the material-point. The kinetics of a rigid body. The moment of inertia, and general theorems and principles. The rotation of a rigid body around an axis, translational and plane motion of a rigid body.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Adequate perseverance and endurance of monotony to perform practical operations.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Literature

1. Serway Jewett: Physics for Scientist and Engineers
3. (Dynamics) https://docs.google.com/file/d/0Bw8MfqmgWLS4V0NFR2dVUWpuYzg/edit

Comment:
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>NEPTUN-code:</th>
<th>Weekly teaching hours:</th>
<th>Credit:</th>
<th>Exam type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical drawing and documentation</td>
<td>RKXMR1ABNE</td>
<td>lecture+practical work+lab work 1+0+2</td>
<td>3</td>
<td>tm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course leader:</th>
<th>Position:</th>
<th>Required preliminary knowledge (with code too):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodáné Rita Kendrovics Dr</td>
<td>associate professor</td>
<td>-</td>
</tr>
</tbody>
</table>

Course Description

The aim of this course is to provide an introduction to drawing fundamentals and to develop drawing skills of students. The first part of the course covers such topics as layout of Technical Drawings, line styles, lettering, scale, geometric construction, transformation, projection (orthographic projection, central or perspective projection, oblique projection), axonometric view (isometric, diametric, Cavalier etc.). The second part of the course focuses on topics as follows: sketching, dimensioning, sectioning, fits and tolerances, surfaces roughness, symbolical representation, detail and assembly drawing.

Professional competencies:

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty. Adequate perseverance and endurance of monotony to perform practical operations. Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection. Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Literature

Coli H.Simmons, Dennis E. Maguire: Manual of Engineering drawing in e-learning system

David Anderson: Technical drawing, Spring, 2006
Course Description

The course aims to introduce the most basic machine parts, giving insight to the engineering speciality. The subject deals with machine parts and machine structures used in up-to-date machines, their types, properties and design principles. Main topics:

- The concept of machine elements, groups and design principles
- Rotating machine parts, shaft joints,
- Mechanical drives: gear drives, worm gearing, chain drive, belt drive. Principle of friction transmission,
- Brakes: structure, function and design basics,
- Supporting shafts, bearings, basic concepts of tribology
- Storage elements: pipe lines and fittings, pipe joints, valve, gate valve, check valve. Flow losses of pipe networks, characteristic curves, reservoirs and seals,
- Grouping of fluid machinery, characteristic parameters. Essential features of pumps, pump head, efficiency, useful power.
- Structure of ventilation equipment and operation (fans, blowers, compressors, vacuum pumps).

Professional competencies:

Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

Adequate perseverance and endurance of monotony to perform practical operations.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Literature

Name of lecture: Environmental chemical practice

NEPTUN-cod: RKXGY1ABNE

Numbers of hours: l+cw+lb
1+0+3

Credit 5 Exam: tm

Course leader: Mészárosné Dr Ágnes Bálint Dr

Position: associate professor

Preliminary credits: RKXAK1ABNE

Curriculum:

Theme of oral lectures:
Subject of environmental chemistry, radiation, effects of radiation, Chernobil accident, Chemistry of soil, spreading of soil pollution, buffering effects of soil, remediation, Chemistry of water, special feature of water, spreading of water pollutions, protection of drinking water, Atmospheric chemistry, reactions in gas phases, radical reactions, ozone layer, winds, El-Nino, Dust pollutions, smog, aerosol, inversion, Cycles (C, N, O, P, S, H₂O), global currents, Importance of recycling, Remediations, recycling

Themes of laboratory practices:
Construction calibration curve (refractometry, extraction (SZOE)

Nitrate contents of water (UV), Phenolic content of water (HPLC)

At the end of the year in a week form will be field exercises for students. Sampling (water, air, soil, dust), and on-site measurements. Botanical, mineralogical, geological field exercises will be realized for students.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to perform environmental impact assessments and to participate in compiling impact studies.

Able to apply in practice as well the regulations and requirements of health and safety, fire protection, and safety engineering as related to their special field.

Able to participate in project and proposal implementation and audit tasks based on their knowledge.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.
<table>
<thead>
<tr>
<th>Literature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. e-learning</td>
</tr>
<tr>
<td>2. Mannaham, Environmental Chemistry</td>
</tr>
<tr>
<td>3. Z. Zhou, Environmental sampling, monitoring</td>
</tr>
</tbody>
</table>

Notes:
Due to the human activity a large number of pollutant got into the environment. Therefore became important the detection of toxic substances in our environment. This is a possible tool the environmental analysis.

The environmental analytical chemistry uses the methods of analytical chemistry and other technics to study the environment. The primary goal is to introduce sampling of different environmental components (the atmosphere, above-ground water and groundwater and soil) to study, that these samples are polluted or not by organic and inorganic toxic substances.

We present the physical and chemistry bases of the environment protection analytics. We present the different validation methods and we talk about the importance of the standardisation.

The students recognise the different sampling methods and sample preparation procedures. We review the atom and molecule spectroscopy procedures. The most important separation technical methods will be presented.

During the laboratory practices will be applied the methods for environmental samples, which were studied during the lectures. The students prepare the environmental samples for measurement and measure the concentration of different pollutants (organic and inorganic) by analytical devices.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

Able to perform basic tests of the quantity and quality characteristics of environmental elements and systems by state-of-the-art measuring instruments; to draw up and implement measurement plans; and to evaluate data.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Taking responsibility towards society for their decisions made in the scope of environment protection.
<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment:</td>
</tr>
</tbody>
</table>
Course Description

If the environmental components (air, water, soil) are examined, than a big amount of measurement data will be collected. The data with a big quantity cannot be interpreted. It is necessary to evaluate our data. Our data should be processed to interpret them.

In simpler cases data processor programs are used, than e.g. Microsoft Excell.

The principle of data sorting will be presented.

We may need special statistical software packages, that we may establish contexts between our measured data with their help. We present the statistical basic principles (descriptor statistics, ANOVA stb.).

Several statistical software packages exist: eg. SPSS, SAS etc..

Origin software package will be presented which is one of the most important program of scientific data processing.

The freeware software R can be written our necessary procedures for analysis of our data statistically. We can compare our algorithms which can be manufactured by Matlab help with the programs written with statistical software packages.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Literature

Comment:
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>Open and Closed loop Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEPTUN-code:</td>
<td>RKXSV1ABNE</td>
</tr>
<tr>
<td>Weekly teaching hours:</td>
<td>1+cw+lb 2+0+2</td>
</tr>
<tr>
<td>Credit:</td>
<td>4</td>
</tr>
<tr>
<td>Exam type :</td>
<td>tm</td>
</tr>
<tr>
<td>Course leader:</td>
<td>Lóránt Szabó Dr</td>
</tr>
<tr>
<td>Position:</td>
<td>senior lecturer</td>
</tr>
<tr>
<td>Required preliminary knowledge :</td>
<td>NMXAN1HBNE</td>
</tr>
</tbody>
</table>

Curriculum:

Learning the basic concept of the open and closed loop control. The open loop control using only On/Off signals. Overview PLC systems. Open loop control with pneumatic final elements.

Review the theoretical background of closed loop control, structure of a control system, signals and basic control blocks. Time response, frequency response, steady state characteristics.

Professional competencies:

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Sharing experiences with colleagues, thus promoting their development.

Literature:

1. Javad, Mohammadpour
 Control of Linear Parameter Varying systems
 Chapter: 1, 2, 3
 ISBN: 978-1-4674-1832

2. Keviczky, László
 Control Engineering
 Chapter: 1, 2, 4, 6, 8
 ISBN: 978-963-9819-74-0

3. E-learning materials in Moodle (lectures)

Comment:
<table>
<thead>
<tr>
<th>Title of course:</th>
<th>NEPTUN-code:</th>
<th>Weekly classes:</th>
<th>Credit:</th>
<th>Exam type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety engineering</td>
<td>RKEBT1ABNE</td>
<td>lecture+workshop+lab work 1+1+0</td>
<td>2</td>
<td>tm</td>
</tr>
</tbody>
</table>

Course leader:
Lóránt Szabó Dr

Position:
senior lecturer

Required preliminary knowledge (with Neptun code): none

Course Description

The goals of the course are to make the prospective engineers know with work conditions that is safe and not harmful for the health in order to be able diagnosing dangers and apply measures for risks reduction based on their knowledge.

The participants’ rights and duty in triparty reconciliation. The concept of accidents and work accidents, the importance of investigation of work accidents. The goals, methodology and application of risk analysis of occupational safety and health (OSH). The role of ergonomics in OSH. The safe formation of work tools, dangers of maintenance, optimizing work environment in accordance with executed activity. Safety regulations for dangerous materials. Defensive capabilities of individual protective equipment that is used for reduction residual dangers of collective protection. Security technology of electricity, protection against electric shocks. Material handling and storage, security technology of pressure vessels. Concept and task of fire protection.

Professional competencies:

Knowledge of requirements and methods for health and safety, fire protection, safety engineering and remediation as related to the field of environment protection.

Able to apply in practice as well the regulations and requirements of health and safety, fire protection, and safety engineering as related to their special field.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Efforts to solve tasks and make management decisions by being aware of the opinions of the colleagues supervised, possibly in cooperation therewith.

Literature

1. OSH directives
2. Guidance on risk assessment at work

Megjegyzés:
Environmental analysis and environmental informatics (10-30cr.):

<table>
<thead>
<tr>
<th>Title of the course: Informatics 1</th>
<th>NEPTUN-code: RMEIN1ABNE</th>
<th>Weekly teaching hours: 1+cw+lb</th>
<th>Credit: 4</th>
<th>Exam type: tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course leader: Eszter Kormány Dr</td>
<td>Position: senior lecturer</td>
<td>Required preliminary knowledge: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curriculum

The aim of the course is to form a basis of informatics for the respective university studies and for the subsequent engineering career as well. Throughout the lectures one will receive insight of the formation, development, current state and areas of development related to the science of informatics. The course covers computer architectures and the necessary hardware and software components as well as the application of the ethical and safe use.

The seminars are focusing on data analysis, problem solving and building algorithms. The skills acquired thereof could be applied to solve tasks of the corresponding subjects and to professional work later on.

Professional competencies:

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty. Adequate perseverance and endurance of monotony to perform practical operations.

Literature

1. PPT files on the homepage of Moodle learning system

Comment: The ppt files are continuously renewed according to the new literature data.
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>Informatics 2</th>
<th>NEPTUN-code:</th>
<th>RMXIN2ABNE</th>
<th>Weekly teaching hours:</th>
<th>1+cw+lb</th>
<th>Credit:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course leader:</td>
<td>Eszter Kormány Dr</td>
<td>Position:</td>
<td>senior lecturer</td>
<td>Exam type:</td>
<td>e</td>
<td>Required preliminary knowledge:</td>
<td>RMXIN1ABNE</td>
</tr>
</tbody>
</table>

Curriculum

In the framework of the course the basics of database manipulation and programming are covered. With the aid and application of MS Access one will be able to construct and manipulate databases. The course introduces database design, normalization steps, creation of tables, setting of keys and relations. Queries and reports are also included. The use of the SQL is part of the course as well.

The course covers the basis of programming and means of algorithm description as well as their usage. One will have the opportunity to create simple algorithms and functions for MS Office applications.

Professional competencies:

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Adequate perseverance and endurance of monotony to perform practical operations.

Literature

1. PPT files on the homepage of Moodle learning system

Comment: The ppt files are continuously renewed according to the new literature data.
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>Geoinformatics (GIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEPTUN-code:</td>
<td>RKXTI1ABNE</td>
</tr>
<tr>
<td>Weekly teaching hours:</td>
<td>1+cw+lb 1+0+2</td>
</tr>
<tr>
<td>Credit:</td>
<td>3</td>
</tr>
<tr>
<td>Exam type:</td>
<td>tm</td>
</tr>
<tr>
<td>Course leader:</td>
<td>Mastrapa, Gonzales dr.</td>
</tr>
<tr>
<td>Position:</td>
<td>college associate professor</td>
</tr>
<tr>
<td>Required preliminary knowledge:</td>
<td></td>
</tr>
</tbody>
</table>

Curriculum

The teaching aim of the course is to introduce the basic theory and practice of GIS. The course will highlight the development of GIS, it will present the database model of GIS, the basic data management techniques and the data analyses method. The course will also demonstrate the data visualisation methods and possibilities of GIS.

Professional competencies:

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Adequate perseverance and endurance of monotony to perform practical operations.

Literature

Comment:
Environmental management (10-30cr.):

<table>
<thead>
<tr>
<th>Title of the course: Environmental Management</th>
<th>NEPTUN-code: RKXKZ1ABNE</th>
<th>Weekly teaching hours: 1+ cw+ lb</th>
<th>Credit: 4</th>
<th>Exam type : tm</th>
</tr>
</thead>
</table>

| Course leader: Imre Biczó Dr | Position: senior research fellow | Required preliminary knowledge : GGXKG2EBNE |

Curriculum:

Environmental management is a rapidly evolving area of science; it is important for more and more sectors of human activity and plays a crucial role in establishing sustainable development.

The Environmental Management focuses on environment, society and public policy, including resource management, environmental assessment and the social, economic and policy aspects of environmental change.

The course deal with different aspects of environmental management to give some insights to evaluate environmental issues and contribute to the economic and policy decision making process in different organizations.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Able to communicate both verbally and in writing in their mother tongue and in at least one foreign language, in respect of professional issues, and to continuously develop their professional skills as required.

Able to participate in project and proposal implementation and audit tasks based on their knowledge.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Literature:

C.J. Barrow; Environmental Management for Sustainable Development, 2nd edition, Routledge

S. Schaltegger, R Burritt, H. Petersen; An Introduction to Corporate Environmental Management, Greenleaf Publishing

Comment:
Title of the course: Environmental law
NEPTUN-code: RKEKJ1ABNE
Weekly teaching hours: 1+cw+lb
Credit: 3
Exam type: tm

<table>
<thead>
<tr>
<th>Course leader:</th>
<th>Position:</th>
<th>Required preliminary knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mészárosné Dr Ágnes Bálint Dr</td>
<td>associate professor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curriculum</th>
</tr>
</thead>
</table>
| - Introduction to Law: Overview of the main legal traditions of the World. Introduction to the Common law tradition (Introduction to the English Law. Sources of law. English court system, Contracts in English law, the law of torts, Corporate Law)
- Introduction to the Civil law tradition (German, French law).
- EC law
- Introduction to Hungarian law:
- Structure, Hungarian law of contracts, corporations, environmental law
- Introduction to Environmental protection, history
- EC/EU Environmental law: EU Primary legislation, right to environment
- Principles, Programmes and Strategies
- Legal Instruments I.: Substantive environmental law
- Legal instruments II: Procedural rules
- Liability measures
- Organs, Authority
- Environment and development: sustainable development, Environmental protection in EU Funds |

<table>
<thead>
<tr>
<th>Professional competencies:</th>
</tr>
</thead>
</table>
| Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.
Knowledge of requirements and methods for health and safety, fire protection, safety engineering and remediation as related to the field of environment protection.
Able to perform public administrative and authority tasks related to environment protection after getting acquainted with the duty assigned to them.
Able to carry out assignments as environmental officer.
Able to take part in environment expertise, advisory, and decision preparation work.
Efforts to solve tasks and make management decisions by being aware of the opinions of the colleagues supervised, possibly in cooperation therewith.
Taking responsibility towards society for their decisions made in the scope of environment protection.
Performing environmental tasks individually and managing special environment protection work independently even in unexpected decision making situations.
Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work. |

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
</table>
2. Angelo, Mary Jane: Harnessing the Power of Science in Environmental Law: Why We Should, Why We Don't, and How We Can, Texas Law Review Publisher, 2008 |

<p>| Comment: |</p>
<table>
<thead>
<tr>
<th>Title of the course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk analysis</td>
</tr>
<tr>
<td>NEPTUN-code:</td>
</tr>
<tr>
<td>RMXKO1ABNE</td>
</tr>
<tr>
<td>Weekly teaching hours:</td>
</tr>
<tr>
<td>l+cw+l\text{n}</td>
</tr>
<tr>
<td>2+1+0</td>
</tr>
<tr>
<td>Credit:</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Exam type:</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>Course leader:</td>
</tr>
<tr>
<td>Sándor Pekker Dr</td>
</tr>
<tr>
<td>Position:</td>
</tr>
<tr>
<td>research professor</td>
</tr>
<tr>
<td>Required preliminary knowledge:</td>
</tr>
</tbody>
</table>

Curriculum

Definition and types of risk
The risk-taking
Risk measures
The controllability of risk
Environmental risks and environmental functions of companies
Health Risk Assessment (HRA)
Ecological Risk Assessment (ERA)
The risk of natural hazards, disasters
The environmental risk of toxic elements
Environmental risks in the information society
Special and border areas.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.

Able to perform environmental impact assessments and to participate in compiling impact studies.

Able to perform public administrative and authority tasks related to environment protection after getting acquainted with the duty assigned to them.

Literature

Light industrial specialization:

| Name of subject: | Technologies and environmental protection in creative industries, (clothing, textiles, leather) I. | NEPTUN-code: | RTWKK1ABNE | Number of hours: | lectures+ classroom practice+ lab practice | 2+0+1 | Credit: | 4 | Requirement: | t

| Course leader: | Gabriella Oroszlány Dr | Position: | senior lecturer | Pre-requisite: | none |

Subject content:

Professional competencies:

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.

Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Bibliography:

4. https://elearning.uni-obuda.hu/

Remark:
<table>
<thead>
<tr>
<th>Name of subject:</th>
<th>Technologies and environmental protection in creative industries, (clothing, textiles, leather) II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEPTUN-code:</td>
<td>RTWKK2ABNE</td>
</tr>
<tr>
<td>Number of hours:</td>
<td>lectures+ classroom practice+ lab practice 1+1+0</td>
</tr>
<tr>
<td>Credit:</td>
<td>2</td>
</tr>
<tr>
<td>Requirement:</td>
<td>e</td>
</tr>
<tr>
<td>Course leader:</td>
<td>Gabriella Oroszlány Dr</td>
</tr>
<tr>
<td>Position:</td>
<td>senior lecturer</td>
</tr>
<tr>
<td>Pre-requisite:</td>
<td>RTWKK1ABNE</td>
</tr>
</tbody>
</table>

Professional competencies:

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.

Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Subject content:

Leather Industry has been one of the traditional industries operating at present. The hides and skins of animals are the source of leather and preserving hides and tanning them into leather has become an important industry. Leather-making is now a scientifically based industry, but still retains some of the charm and mystery of the original craft.

The environmental protection in the leather industries.

Textile manufacturing and environmental problems.

Examples of innovative ECO friendly technologies in leather and textile industry.

Bibliography:

3. https://elearning.uni-obuda.hu/

Remark:
Name of subject: Technologies and environmental protection in creative industries, (print, paper, packaging)

<table>
<thead>
<tr>
<th>NEPTUN-code:</th>
<th>Number of hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMWKI1ABNE</td>
<td>lectures+ classroom practice+lab practice 2+0+1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course leader:</th>
<th>Credit: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judit Borsa Dr</td>
<td>Requirement:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>Pre-requisite:</th>
</tr>
</thead>
<tbody>
<tr>
<td>professor</td>
<td>none</td>
</tr>
</tbody>
</table>

Subject content:

Professional competencies:
Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques. Knowledge of requirements and methods for health and safety, fire protection, safety engineering and remediation as related to the field of environment protection. Adequate perseverance and endurance of monotony to perform practical operations. Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Bibliography:
4. https://elearning.uni-obuda.hu/

Remark:
Name of subject: Technologies and environmental protection in creative industries, (print, paper, packaging) II.

NEPTUN-code: RMWKI2ABNE

Number of hours: lectures+ classroom practice+ lab practice 1+1+0

Credit: 3

Requirement: e

Course leader: Judit Borsa Dr

Position: professor

Pre-requisite: RMWKIIABNE

__Subject content:__

__Professional competencies:__

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques. Knowledge of requirements and methods for health and safety, fire protection, safety engineering and remediation as related to the field of environment protection. Adequate perseverance and endurance of monotony to perform practical operations. Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

__Bibliography:__

2. Design guidelines for sustainable packaging, Packaging Guidelines v. 1.0 © 2006 GreenBlue
4. https://elearning.unio-buda.hu/

Remark:
Name of subject: Theories of technology

NEPTUN-code: RMWTT1ABNE

Number of hours: lectures+ classroom practice+ lab practice 2+1+0

Credit: 4

Requirement: e

Course leader: Tibor Gregász Dr

Position: associate professor

Pre-requisite: none

Subject content:

There are a number of theories attempting to address technology, which tend to be associated with the disciplines of science and technology studies (STS) and communication studies.

Optimization of technological processes and statistical methods.

Most generally, the theories attempt to address the relationship between technology and society and prompt questions about agency, determinism/autonomy, and teleonomy.

Technological imperative: focuses on organizational characteristics which can be measured and permits some level of contingency

Strategic choice: focuses on how technology is influenced by the context and strategies of decision-makers and users.

Technology as a trigger of structural change: views technology as a social object.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.

Open to professional cooperation with specialists related to their profession but involved in other areas.

Bibliography:

2. https://elearning.uni-obuda.hu/

Remark:
Name of subject: Integrated Management Systems
NEPTUN-code: RMWIM1ABNE
Number of hours: lectures + classroom practice + lab practice 1+2+0
Credit: 3
Requirement: tm

Course leader: Eszter Kormány Dr
Position: senior lecturer
Pre-requisite: none

Subject content:
Elements of IMS. Integrated Management System integrates all of an organization’s systems and processes into one complete framework, enabling an organization to work as a single unit with unified objectives.
Organizations often focus on management systems individually, often in silos and sometimes even in conflict. A quality team is concerned with the QMS, often an EHS manager handles both Environmental and Health and Safety issues, etc.
Objectives and structure of ISO 9001.
The Lean and Six Sigma philosophy.

Professional competencies:
Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.
Open to professional cooperation with specialists related to their profession but involved in other areas.
Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

Bibliography:
2. https://elearning.uni-obuda.hu/

Remark:
Name of subject: Informatics support of management systems
NEPTUN-code: RMWII1ABNE
Number of hours: lectures+ classroom practice+ lab practice 2+0+2
Credit: 5
Requirement: tm

Course leader: Eszter Kormány Dr
Position: senior lecturer
Pre-requisite: none

Subject content:
Information technology (IT) is one of the fastest growing recent technology. Various software have been developed for environment and health care which are user friendly and help in better understanding for the topic. A lot of techniques are used under IT for development and application of computational tools to acquire, store, analyze and visualize satellite data which is used for observation, and protection of environment. Due to the development of the internet and information through the satellites a wide database is generated which is the collection of various interrelated articles.

Professional competencies:
In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty. Adequate perseverance and endurance of monotony to perform practical operations.

Bibliography:
2. https://elearning.uni-obuda.hu/

Remark:
Name of subject:
Development of management systems I.

NEPTUN-code:
RMWDS1ABNE

Number of hours:
lectures+ classroom practice+lab practice
2+2+0

Credit:
5

Requirement:
e

Course leader:
Tibor Gregášz Dr

Position:
associate professor

Pre-requisite:
none

Subject content:

Introducing the fundamental tasks of creating and developing quality management and integrated management systems.
The specific goal is to provide the person responsible for environmental management with the tools and methods to exploit the opportunities of a working control system.

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Able to perform environmental impact assessments and to participate in compiling impact studies.
Adequate perseverance and endurance of monotony to perform practical operations.
Efforts to solve tasks and make management decisions by being aware of the opinions of the colleagues supervised, possibly in cooperation therewith.
Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Bibliography:

2. ISO 14001 and ISO 9001 standards
2. https://elearning.uni-obuda.hu/

Remark:
<table>
<thead>
<tr>
<th>Name of subject: Development of management systems II.</th>
<th>NEPTUN-code: RMWDS2ABNE</th>
<th>Number of hours: lectures+ classroom practice+ lab practice 1+0+2</th>
<th>Credit: 3</th>
<th>Requirement: tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course leader: Tibor Gregáš Dr</td>
<td>Position: associate professor</td>
<td>Pre-requisite: RMWDS1ABNE</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Subject content:
Introducing the modern engineering tools of environmental company control and making students acquire the skills thereof. Introducing the implementation considerations and tasks of the system. Information systems connected to environmental decisions and their use. Designing environmentally focused systems, recording facts. The requirements of environmentally focused systems (EMAS, ISO 14001).

Professional competencies:
Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Able to perform environmental impact assessments and to participate in compiling impact studies.
Adequate perseverance and endurance of monotony to perform practical operations.
Efforts to solve tasks and make management decisions by being aware of the opinions of the colleagues supervised, possibly in cooperation therewith.
Responsible proclamation and representation of the value system of the engineering profession; openness to professionally well-founded critical remarks.

Bibliography:
2. ISO 14001 and ISO 9001 standards
2. https://elearning.uni-obuda.hu/

Remark:
Title of the course: Environmental simulation
NEPTUN-code: RKWSIIABNE
Weekly teaching hours: l+cw+lb
Credit: 2
Exam type: tm

Course leader: Vilmos Zoller Dr
Position: college professor
Required preliminary knowledge: -

Curriculum

A) MODELS AND SIMULATION IN ENVIRONMENTAL SCIENCE:

History module: when to apply simulation, simulation (definitions, purposes), what is the system model experiment? The models are grouped and model types.

Classification of computer simulation, the simulation model, the general process of simulation, the types of calculations, the realization of simulation types and simulation. Numerical solution steps and the modelling workflow modelling calculations.

B) MODELLING OF ENVIRONMENTAL PROCESSES:

Characteristics of the soil-plant-atmosphere systems; soil process models, and modelling of different scales; modelling of the processes in soils, model parameters, and rating sensitivity analysis of models and results of models.

C) Capacitive crop simulation models:

The Environmental Economic Models: Structure of the crop simulation models and application of crop simulation models.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to take part in environment expertise, advisory, and decision preparation work.

Literature

2. Editors: Robert W. Marans, Daniel Stokols: Environmental Simulation, SBN: 978-1-4899-1142-1 (Print) 978-1-4899-1140-7 (Online), Springer Verlag, 1993

Comment:
Title of the course: Basic Biotechnology

NEPTUN-code: RKWB11ABNE

Weekly teaching hours: l+cw+lb
2+0+0

Credit: 3

Exam type: tm

Course leader: Hosam, Bayoumi Dr

Position: university private professor, associate professor

Required preliminary knowledge: None

Curriculum:

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.

Constantly upgrading their knowledge of environment protection by attending organized professional development training courses.

Sharing experiences with colleagues, thus promoting their development.

Taking responsibility towards society for their decisions made in the scope of environment protection.

Literature:

• Lectures PPT

Comment: Attendance of lectures is compulsory! Examination requirements: It is not allowed to be absence more than 4 lectures. 2 midterms with at least a pass grade (50-64 = 2%). Requirements to pass the course: Two written exams. Solve the Homework and write an assay. Term marks: 85-100%: excellent (5), 75-84%: good (4), 65-74%: satisfactory (3), 50-64%: pass (2), 0-49%: fail (1).
Environmental Public Administration specialization:

<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>NEPTUN-code:</th>
<th>Weekly classes:</th>
<th>Credit: 5</th>
<th>Exam type: tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Aspects of Settlement Operation I</td>
<td>RKWTU1ABNE</td>
<td>lecture+practical work+lab work</td>
<td>2+1+0</td>
<td></td>
</tr>
</tbody>
</table>

Course leader: Péter Udvardy Dr

Position: associate professor

Required preliminary knowledge (with Neptun code):

Course Description

The course’s objectives are:

- The basics of urban elements of settlements, land use, installation characteristics, municipal infrastructure, settlement design and development.
- General presentation of public services, formation and development of public services.
- The organization of utilities and utility development, and technical infrastructure.
- Urban grid map and the use of space.
- Tasks of the municipalities related to drinking water, electricity, and gas systems.
- Maintaining the public utilities and the skills that are necessary to come to an agreement with utility providers, technical and economic analysis, environmental technologies, soil and water protection, public utilities, public works maintenance of water utilities plant, power plant utilities.

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.
Able to carry out assignments as environmental officer.
Taking responsibility towards society for their decisions made in the scope of environment protection.
Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Literature

Sustainable Preservation Practices for Managing Storage Environments Funding provided by the National Endowment for the Humanities, Division of Preservation and Access, Education & Training Grant Program
Title of the course: Environmental Aspects of Settlement Operation II.
NEPTUN-code: RKWTÜ2ABNE
Weekly classes: lecture+practical work+lab work 2+2+0
Credit: 5
Exam type: e (Written exam)

Course leader: Péter Udvardy Dr
Position: associate professor
Required preliminary knowledge (with Neptun code): RKWTÜ1ABNE

Course Description

The second part of the subject ‘Environmental Aspects of Settlement Operation’ includes the following areas, taking into account the aspects of sustainability and the environmental aspects of the settlement operation:
1. urban water management, including drainage, purification and recovery options, the amount of precipitation, rainfall management, considering expected impacts of climate change, flood and inland water protection and related environmental riverbed settlement principles concerning the settlements,
2. wastewater treatment and sludge treatment strategies for small communities, in particular the possibilities of less than 2,000 population equivalents municipalities, wastewater and sludge recycling,
3. sustainable waste management tasks associated with waste.
4. municipal energetics - alternative energy supply options in the settlements.

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.
Able to carry out assignments as environmental officer.
Taking responsibility towards society for their decisions made in the scope of environment protection.
Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Literature

Title of the course:
Environmental Public Administration Skills

<table>
<thead>
<tr>
<th>NEPTUN-code:</th>
<th>Weekly classes: lecture+practical work+lab work</th>
<th>Credit: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RKWOG1ABNE</td>
<td>2+1+0</td>
<td>(written exam)</td>
</tr>
</tbody>
</table>

Course leader:
Miklós Kovács Dr

<table>
<thead>
<tr>
<th>Position:</th>
<th>Required preliminary knowledge (with Neptun code):</th>
</tr>
</thead>
<tbody>
<tr>
<td>master teacher</td>
<td></td>
</tr>
</tbody>
</table>

Exam type: e

Course Description

The course’s objectives are:

- The history of environmental management.
- The environment in the system of public administration.
- Environmental protection, nature conservation, water management, institutional systems, interfaces, management structure.
- Environmental responsibilities of local governments.
- Environmental protection system in the Constitution.
- The basic concepts and structure of environmental law, and the associated lower-level legislation.
- Law principles of the environment protection.
- Environmental official duties, and powers assigned to them.
- Conditions and the administrative authorization for the use of the environment.
- The system of responsibility in environmental protection.
- The official administrative fees of environmental conversation and protection.

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.

Able to perform public administrative and authority tasks related to environment protection after getting acquainted with the duty assigned to them.

Undertaking and authentically representing the social role of environment protection, its basic relationship with the world.

Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.

Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

Literature

- James L. Perry, Robert K. Christensen: Handbook of Public Administration, 3rd Edition
 ISBN: 978-1-118-77555-4
Title of the course: Environmental Management and Community Development

NEPTUN-code: RKWGT1ABNE
Weekly classes: lecture+practical work+lab work
2+2+0
Credit: 5
Exam type: tm

Course leader: Imre Biczó Dr
Position: senior research fellow
Required preliminary knowledge (with Neptun code): RKXKZ1ABNE

Course Description

The course synthesizes studied objects in the foundation specialist knowledge, industry, agriculture and services, as well as the environmental impact of urbanization. It analyses the trends of the environmental impact of economic and technological development activities, and the need for sustainable use of natural resources. It deals with the concept of sustainable development, sustainability and feasibility in the interpretation of urban planning in relation to development. The course describes the concept, purpose and functions of the area and local development, including the development of basic knowledge of the settlement as well. During the semester, we will go through the stages of development of the settlements, and the most important factors in the formation of urban development history and present. International and domestic practices will be studied as well as important financial and legal tools.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.
Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Able to perform public administrative and authority tasks related to environment protection after getting acquainted with the duty assigned to them.
Taking responsibility towards society for their decisions made in the scope of environment protection.
Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.
Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

Literature

R.C.Gaur: Basic environmental engineering, New Age International Publishers. 2008 in e-learning system
Task of the course: Environmental quality management system

NEPTUN-code: RMWQM1ABNE

Weekly classes: lecture+practical work+lab work

Credit: 5
Exam type: e

Course leader: Mészárosné Dr Ágnes Bálint Dr
Position: associate professor
Required preliminary knowledge (with Neptun code): none

Course Description

The aim of the subject is to clarify the environmental thesaurus, the concept of the management system and the basics of the systems’ operation.

- Implementation and requirements of environmental managements systems according to the ISO 14001 standard
- Elements of the realization of EMS: environmental evaluations, system of environmental performance indices, environmental targets
- Elements of preparation for emergencies, documentation
- System of the European EMAS requirements in the organizational operation
- Possibilities of integrating the systems
- Risk assessments in EMS
- SPC based control of environmental parameters
- Planning and managing the process of projects aiming to improve environmental performance, project quality management

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.
Able to take part in environment expertise, advisory, and decision preparation work.
Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

Literature:

1. EMAS
2. ISO 14001, OHSAS 18001
3. Moodle - https://elearning.uni-obuda.hu
<table>
<thead>
<tr>
<th>Title of the course: Informatics support for management systems</th>
<th>NEPTUN-code: RMWII1ABNE</th>
<th>Weekly teaching hours: 1+cw+lb</th>
<th>Credit: 5</th>
<th>Exam type: tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course leader: Eszter Kormány Dr</td>
<td>Position: senior lecturer</td>
<td>Required preliminary knowledge: -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curriculum

Information technology (IT) is one of the fastest growing recent technology. Various software have been developed for environment and health care which are user friendly and help in better understanding for the topic. A lot of techniques are used under IT for development and application of computational tools to acquire, store, analyze and visualize satellite data which is used for observation, and protection of environment. Due to the development of the internet and information through the satellites a wide database is generated which is the collection of various interrelated articles.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Literature:

2. https://elearning.uni-obuda.hu/

Comment:
Title of the course: Disaster recovery

NEPTUN-code: RKWKA1ABNE

Weekly teaching hours: lecture+practical work+lab work 2+1+0

Credit: 4
Exam type: tm

Course leader: Konrád Lájer Dr
Position: associate professor

Required preliminary knowledge (with code too): RKEBT1ABNE

Course Description

The course purpose is to prepare students to deal with tasks that are specified in Acts and knowing their application possibilities for administering natural and civilization challenges by means of public administration, and to contribute environmental security maintaining of population.

Position and role of natural and civilization disaster recovery in the state defense system. Disaster recovery structure of disaster recovery, disaster types. Legislative basis of disaster recovery. Structure and management system of disaster recovery.

Disaster recovery areas:

- Official (preventive) task of fire service and tasks of fire-fighting and damage control.

- Tasks of civil defence in elimination of emergency situations that might be developed due natural and civilization factors. Organizing and planning civil defense.

- The area of industrial security, security of critical infrastructure, industrial accident prevention, activities of hazardous materials handling, transporting hazardous commodities.

The course knowledge material besides understanding of official preventive and controlling tasks contains applicable methods for damage controlling and eliminating emergency situation also.

Professional competencies:

Knowledge of the methodology and legal regulations for performing environmental impact assessments and for compiling impact studies.
Able to perform environmental impact assessments and to participate in compiling impact studies.
Able to apply environmental remediation methods, to prepare for and participate in remediation.
Able to reveal deficiencies in the technologies applied and process risks and to initiate mitigation measures after getting familiarized with the technology concerned.
35. Performing environmental tasks individually and managing special environment protection work independently even in unexpected decision making situations.

Literature

1. WHO Library Cataloguing-in-Publication Data Manual for the public health
www.who.int/environmental_health_emergencies/publications/FINAL-PHM-Chemical-Incidents_web.pdf

2. www.who.int/water_sanitation_health/hygiene/emergencies/fs2_18.pdf

3. Vijay Asar: Hazard Assessment and Risk Management Techniques for Industries, Disaster Prevention & Management Centre

Comments:
Title of the course:

Environmental Simulations

NEPTUN-code:

RKWS11ABNE

Weekly teaching hours:

1+cw+lb 1+0+1

Credit:

2

Exam type:

tm

Course leader:

Vilmos Zoller Dr

Position:

college professor

Required preliminary knowledge:

Curriculum

A) MODELS AND SIMULATION IN ENVIRONMENTAL SCIENCE:

History module: when to apply simulation, simulation (definitions, purposes), what is the system model experiment? The models are grouped and model types.

Classification of computer simulation, the simulation model, the general process of simulation, the types of calculations, the realization of simulation types and simulation. Numerical solution steps and the modelling workflow modelling calculations.

B) MODELLING OF ENVIRONMENTAL PROCESSES:

Characteristics of the soil-plant-atmosphere systems; soil process models, and modelling of different scales; modelling of the processes in soils, model parameters, and rating sensitivity analysis of models and results of models.

C) Capacitive crop simulation models:

The Environmental Economic Models: Structure of the crop simulation models and application of crop simulation models.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Able to take part in environment expertise, advisory, and decision preparation work.

Literature

2. Editors: Robert W. Marans, Daniel Stokols: Environmental Simulation, SBN: 978-1-4899-1142-1 (Print) 978-1-4899-1140-7 (Online), Springer Verlag, 1993

Comment:
Course leader: Imre Biczó Dr
Position: senior research fellow

Course Description
This course gives students the proven techniques and skills for writing proposals in order to get the best results. The course contains a practical guide how to apply and write tenders in any field of business, in order to develop resources. This is a practical, step by step workshop where tenders from both public and private sector will be assessed and participants will have the opportunity to draft tender applications in class and have them assessed by the facilitator. Discussions will also take place with regard to current developments in this field.

The ability to write winner tenders and proposals combines strategic thinking with tactical decision making and the ability to write clear, concise and compelling documents. This practical workshop will use students’ own documents and examples to improve skills, clarify students’ thinking and give them increased ability to write winner tenders and proposals.

The topics will be covered are the following:
- establishing strategy: how to decide whether to apply for a tender or proposal
- the differences between tenders, proposals and expressions of interest
- getting yourself into a better position to win tenders
- reading the tender and understanding the requirements of the assessment panels
- using templates – and moving beyond them
- techniques for making your writing clear and compelling
- using visual material to make an impact
- positioning your company and offerings for maximum impact
- negotiating the parameters of the project
- balancing certainty and flexibility
- designing timelines and milestones.

During the semester, all students should choose a tender or proposal, presenting its topic and writing an application for that.

Professional competencies:

Able to solve tasks of water, soil, air, radiation, and noise protection, as well as of waste treatment and processing at proposal level; to participate in preparing decisions; to perform authority audits; and to take part in the operation of these technologies.
Able to participate in project and proposal implementation and audit tasks based on their knowledge.
Collaboration with civil organizations engaged in environment protection, but willing to argue in order to develop optimal solutions.
Open to professional cooperation with specialists related to their profession but involved in other areas.
Cooperation with qualified experts from other special areas (primarily economic and legal) in the course of completing professional tasks.

Literature

<table>
<thead>
<tr>
<th>Author/Title</th>
<th>ISBN</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandra Michie: Successful Tender Writing</td>
<td>978-0864607447</td>
<td>Thomson Reuters</td>
</tr>
<tr>
<td>Kristine Daw: Your Tender Response - Book 2</td>
<td></td>
<td>Collette Beck (Editor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Green energy specialization:

<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>NEPTUN-code:</th>
<th>Weekly teaching hours:</th>
<th>Credit:</th>
<th>Exam type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The source of renewable energies II. (The application of wind power)</td>
<td>RKWMF2ABNE</td>
<td>l+ cw+ lb 2+0+0</td>
<td>3</td>
<td>e</td>
</tr>
</tbody>
</table>

Course leader: Lóránt Szabó Dr
Position: senior lecturer
Required preliminary knowledge:

Curriculum

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.
Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.
Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.
Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.
Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.
Able to participate in project and proposal implementation and audit tasks based on their knowledge.
Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.
Able to take part in environment expertise, advisory, and decision preparation work.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.
Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

Literature

Comment:
Title of the course: The source of renewable energies I. (The application of solar energy)
NEPTUN-code: RKWMF1ABNE
Weekly teaching hours: l+cw+lb 2+1+0
Credit: 4
Exam type: e
Course leader: Lóránt Szabó Dr
Position: senior lecturer
Required preliminary knowledge: RKXEL1ABNE

<table>
<thead>
<tr>
<th>Curriculum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Professional competencies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.</td>
</tr>
<tr>
<td>Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.</td>
</tr>
<tr>
<td>Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.</td>
</tr>
<tr>
<td>Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.</td>
</tr>
<tr>
<td>Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.</td>
</tr>
<tr>
<td>Able to participate in project and proposal implementation and audit tasks based on their knowledge.</td>
</tr>
<tr>
<td>Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.</td>
</tr>
<tr>
<td>Able to take part in environment expertise, advisory, and decision preparation work.</td>
</tr>
<tr>
<td>Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
</table>

Comment:
Title of the course:
The source of renewable energies III. (Geothermal, water energy)

NEPTUN-code:
RKWMF3ABNE

Weekly teaching hours:
+l+cw+lb
2+1+0

Credit:
4

Exam type:
e

Course leader:
Lóránt Szabó Dr

Position:
senior lecturer

Required preliminary knowledge:

Curriculum

The alternative energy sector is one of the most dynamically developing industries around the world. Since people are worried about the climate change, they are turning to alternative energy sources.

We are familiarizing our students with the various forms of environmentally friendly energy sources, that can replace the coal, oil and gas energy sources we used so far, so that we can maintain our standard of living, but we can save our environment.

We have several alternative source of energy in the nature, e.g. geothermal energy. Another possibility is to utilize the high tide - tidal natural phenomenon for energy production.

We describe the main principle of hydrogen cells and the attempts of car manufacturers how they intend to replace the former gasoline powered and fuel oil powered cars.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Comprehensive knowledge of the basic features and interrelations of environmental elements and systems, as well as of the environmentally harmful substances affecting them.

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.

Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.

Able to participate in project and proposal implementation and audit tasks based on their knowledge.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Able to take part in environment expertise, advisory, and decision preparation work.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

Literature

Curriculum

The goal of this course is to introduce and classify the raw materials for different renewable energy production technologies.

The education of this subject is designed for two semesters. During the first semester the different energy plants will be introduced to cover all the main potential energy crops. For each main species of energy crops a brief description will be given what outlines the ecological requirements, methods of propagation, crop management, rotation and production, harvesting, handling and storage, processing and utilization.

Beyond the energy crops the different bio-waste types of food industry and agriculture will be evaluated from the point of view of their applicability in the biomass energy plants.

The relevant regulation of biomass applications will be outlined also along with questions relating to technology and biomass material relationships.

Professional competencies:

Knowledge of the learning, knowledge acquisition, and data collection methods of the special fields of environment protection, their ethical limitations and problem solving techniques.

Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Literature

Title of the course: Row materials for biomass applications II. (Energetic utilisation of biomass)

<table>
<thead>
<tr>
<th>NEPTUN-code: RKWMU2ABNE</th>
<th>Weekly teaching hours: l+cw+lb 2+1+0</th>
<th>Credit: 4</th>
<th>Exam type: e</th>
</tr>
</thead>
</table>

| Course leader: Imre Biczó Dr | Position: senior research fellow | Required preliminary knowledge: RKWMU1ABNE |

Curriculum

The goal of the teaching in the second semester of this subject is as follows:

Row materials for biomass energy applications will be introduced and classified as sludge form waste water treatment plants and biogas energy plants.

The refuse-derived fuel (RDF) and the solid recovered fuel’ (SRF) will be addressed also during the course including the difference between, their sources and processing and their application opportunity in the energy producing technologies.

The row materials, their handlings and their technical differences for biomass / biogas and “dry” biogas applications will be introduced along with the relevant standards and regulations.

Professional competencies:

Able to apply environmental remediation methods, to prepare for and participate in remediation.

Able to cooperate with engineers involved in the development and application of production and other technologies to develop the given technology in terms of environment protection.

Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Literature

Comment:
Title of the course: Alternative energy usage in practice I. (Economic)

NEPTUN-code: RKWAE1ABNE

Weekly teaching hours: l+cw+lb
2+1+0

Credit: 3
Exam type: e

Course leader: Vilmos Zoller Dr
Position: college professor

Required preliminary knowledge: -

Curriculum

The students will learn about alternative energy systems, their properties and the most important features of the operation of each system. In this subject the students will get familiar with alternative energy sources, with the basic principles and the operating conditions.

Students will get an insight into the energy transformation systems, and into the connection between the energy and the environment. Students will be familiarized with the policy and the relations in Hungary for the application of environmental engineering practice processes occurring within the energy consumption sub-system. The goal of this subject is to introduce the applications used in power systems occurring in practice.

Professional competencies:

Knowledge of the concepts and tools of economics and environmental economics, project and environment management in environment protection.

Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.

Able to participate in project and proposal implementation and audit tasks based on their knowledge.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Literature

Comment:
Title of the course:
Alternative energy usage in practice II. (System of energetics)

NEPTUN-code:
RKWAE2ABNE

Weekly teaching hours:
l+cw+lb
2+0+0

Credit:
3

Exam type:
tm

Course leader:
Vilmos Zoller Dr

Position:
college professor

Required preliminary knowledge:
-

Curriculum

The students will learn about alternative energy systems, their properties and the most important features of the operation of each system. In this subject the students will get familiar with alternative energy sources, with the basic principles and the operating conditions.

Students will get an insight into the energy transformation systems, and into the connection between the energy and the environment. Students will be familiarized with the policy and the relations in Hungary for the application of environmental engineering practice processes occurring within the energy consumption sub-system. The goal of this subject is to introduce the applications used in power systems occurring in practice.

Professional competencies:

Knowledge of major environmental technologies, equipment and structures associated with each technology, including the functioning and operation thereof.

Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.

Able to perform public administrative and authority tasks related to environment protection after getting acquainted with the duty assigned to them.

Literature

Comment:
Title of the course: Alternative energy usage in practice III. (Transport)

NEPTUN-code: RKWAE3ABNE
Weekly teaching hours: l+ cw+l
2+0+0
Credit: 3
Exam type: e

Course leader: Vilmos Zoller Dr
Position: college professor
Required preliminary knowledge: -

Curriculum

In the practice of using alternative energy, students will discover the possibilities of using alternative forms of transport, their properties, as well as studying the various alternatives technological background. In this subject the students will acquainted with the development of transportation systems, and will hear about the transportation options which can be applied in the future.

The types of alternative fuels, their usability in transport systems and their relationship will be analysed in detail. Within the transport system, students will become familiar with the environmentally friendly means of transportation, and the relationship of their possible applications occurring in practice in Hungary. This subject will also introduce the use of alternative transport systems that appear in practice right now.

Professional competencies:

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Able to participate in project and proposal implementation and audit tasks based on their knowledge.

Able to participate creatively in engineering work based on their multidisciplinary skills, as well as to adapt to continuously changing circumstances.

Literature

Comment:
The alternative energy sector is one of the fastest growing industries worldwide. As people all around the world are worried about the climate changing, they are turning to the alternative energy sources more and more. Due to the surging exchange rates of the conventional energy sources, people are looking for alternative solutions. Therefore we are going to describe and summarize the alternative options, such as like the utilization of wind energy, thermal waters and bio-fuels. In several countries, laws help to promote the use of alternative energies and thus make them less expensive. Examples from the practice will be reviewed for the application of alternative energy sources.

Professional competencies:
Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.
Open to professional cooperation with specialists related to their profession but involved in other areas.
Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

Literature
Title of the course: Alternative energy usage in practice V. (Building energy)

NEPTUN-code: RKWAE5ABNE
Weekly teaching hours: l+cw+lb 2+1+0
Credit: 3
Exam type: tm

Course leader: Vilmos Zoller Dr
Position: college professor
Required preliminary knowledge: -

Curriculum
Students will get acquainted with possibilities of present days building energy regulations and the legal backgrounds of the requirements. Within this subject the students will become acquainted with the possibilities of insulation and heating systems for buildings, and also with their energy measurement systems.

Students will get insight into the shaping and configuring of energy systems in buildings, the opportunities of energy management, and the relations between indoor formations in different mechanical systems. Within the energy systems of buildings students will be familiarized with the opportunities of applications that occur in the practice of environmental engineering. The goal of this subject is to teach the practical applications of alternative energy systems in case of buildings.

Professional competencies:
Knowledge of requirements and methods for health and safety, fire protection, safety engineering and remediation as related to the field of environment protection.
Able to communicate both verbally and in writing in their mother tongue and in at least one foreign language, in respect of professional issues, and to continuously develop their professional skills as required.
Able to participate in project and proposal implementation and audit tasks based on their knowledge.
Efforts to improve knowledge by on-going self-education and continuously update their knowledge of the world.

Literature
Language:English
Download options:EPUB 2 (Adobe DRM)

Comment:
Title of the course: Environmental Simulations

NEPTUN-code: RKWS11ABNE

Weekly teaching hours: 1+cw+1b

1+0+1

Credit: 2

Exam type: tm

Course leader: Vilmos Zoller Dr

Position: college professor

Curriculum

A) MODELS AND SIMULATION IN ENVIRONMENTAL SCIENCE:

History module: when to apply simulation, simulation (definitions, purposes), what is the system model experiment? The models are grouped and model types.

Classification of computer simulation, the simulation model, the general process of simulation, the types of calculations, the realization of simulation types and simulation. Numerical solution steps and the modelling workflow modelling calculations.

B) MODELLING OF ENVIRONMENTAL PROCESSES:

Characteristics of the soil-plant-atmosphere systems; soil process models, and modelling of different scales; modelling of the processes in soils, model parameters, and rating sensitivity analysis of models and results of models.

C) Capacitive crop simulation models:

The Environmental Economic Models: Structure of the crop simulation models and application of crop simulation models.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Knowledge of the main methods to examine the quantity and quality features of environmental elements and systems, their typical measuring instruments and limitations thereof, as well as methods for the evaluation of data measured.

Literature

2. Editors: Robert W. Marans, Daniel Stokols: Environmental Simulation, SBN: 978-1-4899-1142-1 (Print) 978-1-4899-1140-7 (Online), Springer Verlag, 1993

Comment:
<table>
<thead>
<tr>
<th>Title of the course:</th>
<th>Energetics, efficiency of energy and economy of energetics</th>
<th>NEPTUN-code:</th>
<th>RKWEG1ABNE</th>
<th>Weekly teaching hours:</th>
<th>$l+cw+lb$</th>
<th>Credit:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course leader:</td>
<td>Konrád Lájer Dr</td>
<td>Position:</td>
<td>associate professor</td>
<td>Exam type:</td>
<td>tm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required preliminary knowledge:</td>
<td>RKWAЕ2АВНЕ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curriculum

Energetics is focusing on studying the energy efficiency in order to reduce energy loads.

This topic is closely linked to environmental protection. We would like to make our equipments more efficient with low energy investment, which will save our environment while the used energy should come from an alternative source of energy.

The subject covers the topics of energies and energetics related to electrical systems, energy management and energy efficiency.

Professional competencies:

Knowledge of general and specific mathematical, natural and social scientific principles, rules, relations, and procedures as required to pursue activities in the special field of environment protection.

In possession of state-of-the-art IT skills, being able to use professional databases and certain design, modelling, and simulation softwares depending on their specialty.

Knowledge of the basics of energy management, options for energy production, their advantages and disadvantages, as well as the concept and feasibility options of sustainable development.

Monitoring regulatory, technical, technological, and administrative changes related to the special field and enforcing them in their professional work.

Literature

Comment: